added code for generating part for clamping the plate to the rod

master
Simon Pirkelmann 2019-09-16 14:24:07 +02:00
parent 817db1a623
commit 1a02956519
3 changed files with 57 additions and 28 deletions

View File

@ -166,8 +166,10 @@ class PlateLayout:
# compute coordinates and various measurements for fixed radii of plate and tubes
self.target_plate_radius = 160.0
self.target_center_hole_radius = 7.5
self.target_radius_1 = 50.5
self.target_radius_1 = 50.5 # should be 50 mm according to data sheet but in fact its a bit more than that..
self.target_radius_1_inner = 94.0/2.0
self.target_radius_2 = 20.0
self.target_radius_2_inner = 34.0/2.0
teeth = 200
D = 2 * self.target_plate_radius
@ -296,7 +298,7 @@ class PlateLayout:
self.tube_1_cuts[k]['tangent_point'] = t1
self.tube_1_cuts[k]['angle_deg'] = angle1_deg
self.tube_1_cuts[k]['length'] = dispenser_1_outer_diameter_small
self.tube_1_cuts[k]['width'] = 5.0
self.tube_1_cuts[k]['width'] = 4.0
plt.plot(cut_center[0], cut_center[1], 'o')
@ -355,7 +357,7 @@ class PlateLayout:
self.tube_2_cuts[k]['tangent_point'] = t1
self.tube_2_cuts[k]['angle_deg'] = angle1_deg
self.tube_2_cuts[k]['length'] = dispenser_2_outer_diameter_small
self.tube_2_cuts[k]['width'] = 5.0
self.tube_2_cuts[k]['width'] = 4.0
plt.plot(cut_center[0], cut_center[1], 'o')
@ -410,7 +412,24 @@ class PlateLayout:
if output_all:
f_lines = self.output_whole(f_lines)
else:
f_lines = self.output_segment(f_lines, 2, split_at_big_circles=False)
f_lines += '<g>\n'
f_lines = self.output_segment(f_lines, 2, split_at_big_circles=True)
f_lines += '</g>\n'
# output other parts
r = np.linalg.norm(self.tube_1_coords[0]) - self.target_radius_1
f_lines += '<g>\n'
f_lines += svg_circle('1', 'center_ring_clamp', (0,0), r)
f_lines += svg_circle('2', 'center_ring_clamp', (0,0), self.target_center_hole_radius)
height = 5.0
width = 40.0
f_lines += svg_rect(x=-width/2.0, y=-height/2.0, width=width, height=height)
f_lines += '</g>\n'
f_lines += '<g>\n'
f_lines += svg_circle('1', 'center_ring', (0,0), r)
f_lines += svg_circle('2', 'center_ring', (0,0), self.target_center_hole_radius)
f_lines += '</g>\n'
f_lines.append('</svg>\n')
@ -419,6 +438,10 @@ class PlateLayout:
fw.writelines(f_lines)
fw.close()
pass
@ -454,13 +477,13 @@ class PlateLayout:
f_lines += svg_gear_marking(self.tube_1_tangents[k_next], self.tube_1_coords[k_next])
# cutout rectangle for big circles
f_lines += svg_rectangle(k_next, 'cut', self.tube_1_cuts[k_next])
f_lines += svg_rect_trans(k_next, 'cut', self.tube_1_cuts[k_next])
# gear pos for small circle
f_lines += svg_gear_marking(self.tube_2_tangents[k], self.tube_2_coords[k])
# cutout rectangle for small circles
f_lines += svg_rectangle(k, 'cut', self.tube_2_cuts[k])
f_lines += svg_rect_trans(k, 'cut', self.tube_2_cuts[k])
# first segment border
f_lines += svg_segment_border_inner(self.tube_1_angles[k], self.target_center_hole_radius,
@ -501,38 +524,38 @@ class PlateLayout:
f_lines += svg_arc(p1, p2, self.target_center_hole_radius, 0, 1)
# small circles arcs
f_lines += svg_half_circle(k, 'small circle', self.tube_2_coords[k], self.target_radius_2,
f_lines += svg_half_circle(k, 'small circle', self.tube_2_coords[k], self.target_radius_2_inner,
self.tube_2_angles[k])
f_lines += svg_half_circle(k_next, 'small circle', self.tube_2_coords[k_next], self.target_radius_2,
f_lines += svg_half_circle(k_next, 'small circle', self.tube_2_coords[k_next], self.target_radius_2_inner,
self.tube_2_angles[k_next], orientation_flag=0)
# big circle
f_lines += svg_circle(k, 'big circle', self.tube_1_coords[k_next], self.target_radius_1)
f_lines += svg_circle(k, 'big circle', self.tube_1_coords[k_next], self.target_radius_1_inner)
# gear pos for big circle
f_lines += svg_gear_marking(self.tube_1_tangents[k_next], self.tube_1_coords[k_next])
# cutout rectangle for big circles
f_lines += svg_rectangle(k, 'cut', self.tube_1_cuts[k_next])
f_lines += svg_rectangle(k, 'cut', self.tube_1_cuts[k_next_next])
f_lines += svg_rect_trans(k, 'cut', self.tube_1_cuts[k_next])
f_lines += svg_rect_trans(k, 'cut', self.tube_1_cuts[k_next_next])
# gear pos for small circle
f_lines += svg_gear_marking(self.tube_2_tangents[k_next], self.tube_2_coords[k_next])
# cutout rectangle for small circles
f_lines += svg_rectangle(k_next, 'cut', self.tube_2_cuts[k_next])
f_lines += svg_rect_trans(k_next, 'cut', self.tube_2_cuts[k_next])
# first segment border
f_lines += svg_segment_border_inner(self.tube_2_angles[k], self.target_center_hole_radius,
self.tube_2_coords[k], self.target_radius_2, puzzle_scale=0.5, placement=0.25)
self.tube_2_coords[k], self.target_radius_2_inner, puzzle_scale=0.5, placement=0.25)
f_lines += svg_segment_border_outer(self.tube_2_angles[k], self.target_plate_radius, self.plate_module,
self.tube_2_coords[k], self.target_radius_2)
self.tube_2_coords[k], self.target_radius_2_inner)
# second segment border
f_lines += svg_segment_border_inner(self.tube_2_angles[k_next], self.target_center_hole_radius,
self.tube_2_coords[k_next], self.target_radius_2, puzzle_scale=0.5, placement=0.25)
self.tube_2_coords[k_next], self.target_radius_2_inner, puzzle_scale=0.5, placement=0.25)
f_lines += svg_segment_border_outer(self.tube_2_angles[k_next], self.target_plate_radius, self.plate_module,
self.tube_2_coords[k_next], self.target_radius_2)
self.tube_2_coords[k_next], self.target_radius_2_inner)
# find outmost points for segment cut lines
@ -629,13 +652,13 @@ class PlateLayout:
# output cuts for big circles
for k, c in self.tube_1_cuts.items():
text = svg_rectangle(k, 'cut', c['center'], c['length'], c['width'], c['angle_deg'])
text = svg_rect_trans(k, 'cut', c)
f_lines = f_lines + text
pass
# output cuts for small circles
for k, c in self.tube_2_cuts.items():
text = svg_rectangle(k, 'cut', c['center'], c['length'], c['width'], c['angle_deg'])
text = svg_rect_trans(k, 'cut', c)
f_lines = f_lines + text
pass

View File

@ -10,12 +10,15 @@ Important: SVG produced by python script needs to be openend, transformed and sa
In progress:
TODO:
TODO:
- add displacement between gear cuts and circles to have more stability at the cuts
- second ring above the first plate to fix the containers and hide the gear mechanic (or manufacure them from acrylic to show the mechanic)
- whole for hinges of big dispenser gears
- hole for hinges of big dispenser gears (only if necessary)
- shovels for dispensers by cutting segments from a sphere
DONE:
- center ring for holding the plates
- make circles for lower plate of the two plates a bit smaller s.t. tube are perfectly set into the upper plate and fixed by the lower plate
- stack 2 plates for better stability (add cuts at small circles)
- automate generation of plate segment
- connectors for segments (jigsaw puzzle style)

View File

@ -161,14 +161,7 @@ def svg_arc(p1, p2, r, large_arc, sweep):
return text
def svg_rectangle(id, name, c):
center = c['center']
width = c['length']
height = c['width']
angle = c['angle_deg']
x = np.sqrt(center[0] ** 2 + center[1] ** 2) - width / 2
y = - height
def svg_rect(x, y, width, height, angle=0.0):
text = ['<g transform="rotate({})">\n '
'<rect x="{}mm" y="{}mm" width="{}mm" height="{}mm" style="fill:none;stroke-width:0.1mm;stroke:rgb(0,0,0)" />\n '
'</g>\n'
@ -176,6 +169,16 @@ def svg_rectangle(id, name, c):
return text
def svg_rect_trans(id, name, c):
center = c['center']
width = c['length']
height = c['width']
angle = c['angle_deg']
x = np.sqrt(center[0] ** 2 + center[1] ** 2) - width / 2
y = - height
return svg_rect(x, y, width, height, angle)
def svg_line(p1, p2, width=1.0):
text = ['<line x1="{}mm" y1="{}mm" x2="{}mm" y2="{}mm" style="stroke:rgb(0,0,0);stroke-width:{}mm" />'.format(p1[0],