diff --git a/prototype/circles.py b/prototype/circles.py
index 322b670..d191102 100644
--- a/prototype/circles.py
+++ b/prototype/circles.py
@@ -138,7 +138,7 @@ def svg_half_circle(id, name, c, r, angle, orientation_flag=1):
text = [' \n'.format(begin[0], begin[1], radius_scaled, radius_scaled, orientation_flag, orientation_flag,
end[0], end[1])]
@@ -151,7 +151,7 @@ def svg_arc(p1, p2, r, large_arc, sweep):
radius_scaled = r * svg_scale
text = [' \n'.format(begin[0], begin[1], radius_scaled, radius_scaled, large_arc, sweep,
end[0], end[1])]
@@ -589,7 +589,7 @@ class PlateLayout:
def output_segment(self, f_lines, k):
# k = which segment?
- k_next = (k + 1) % 5
+ k_next = (k + 1) % self.N
# center hole
a = self.tube_1_angles[k]
@@ -679,8 +679,6 @@ class PlateLayout:
#text = svg_line(p3, p4, 0.1)
f_lines = f_lines + text
- outer_point_1 = p4
-
# segment border (left)
a = self.tube_1_angles[k_next]
a = a / 360.0 * 2.0 * np.pi
@@ -700,7 +698,14 @@ class PlateLayout:
text = svg_line_puzzle(p3, p4)
f_lines = f_lines + text
- outer_point_2 = p4
+ r_pitch_minus_module = self.target_plate_radius - self.plate_module
+ a1 = (self.tube_1_angles[k] - 0.9) / 360.0 * 2.0 * np.pi
+ vunit1 = np.array([np.cos(a1), np.sin(a1)])
+ outer_point_1 = vunit1 * r_pitch_minus_module
+
+ a2 = (self.tube_1_angles[k_next] - 0.9) / 360.0 * 2.0 * np.pi
+ vunit2 = np.array([np.cos(a2), np.sin(a2)])
+ outer_point_2 = vunit2 * r_pitch_minus_module
# truncate gear path
for j in range(len(f_lines)):
@@ -724,6 +729,23 @@ class PlateLayout:
dist_1 = [np.linalg.norm(c - outer_point_1 * svg_scale) for c in coordinates]
dist_2 = [np.linalg.norm(c - outer_point_2 * svg_scale) for c in coordinates]
+ min_dist_index_1 = np.argmin(dist_1)
+ min_dist_index_2 = np.argmin(dist_2)
+
+ if min_dist_index_2 > min_dist_index_1:
+ coordinates = coordinates[min_dist_index_1:min_dist_index_2+1]
+ else:
+ coordinates = coordinates[min_dist_index_1:] + coordinates[0:min_dist_index_2]
+ print("TODO: check this")
+
+ coordinates_data_raw_new = "".join(['{},{} '.format(c[0], c[1]) for c in coordinates])
+
+ gear_data_new = gear_data[0:index_start] + "M " + coordinates_data_raw_new + gear_data[index_end+1:]
+ f_lines[j] = gear_data_new
+
+
+
+
# find minimum distance and keep only points between the two distances
# problem: does not consider manual rotation of the plate
# -> rotate points outer_point_1 and outer_point_2 before computing the distance