Compare commits

...

19 Commits

Author SHA1 Message Date
a31dd52392 updated progress 2019-09-12 21:28:22 +02:00
74d5f2edcb added code for outputting only segment instead of whole plate 2019-09-12 21:27:54 +02:00
affa70ede6 svg magic for outputting only part of the plate 2019-09-12 10:54:10 +02:00
0bf09ea2fa FreeCAD plate design script (no longer used) 2019-09-12 08:41:24 +02:00
39af6fb67d order for dispenser tubes 2019-09-12 08:40:59 +02:00
81622fbc52 added __init__.py for module 2019-09-12 08:39:59 +02:00
869956c59c main file for python script 2019-09-12 08:36:34 +02:00
6404c5598d svg drawing of gear for driving the plate 2019-09-12 08:35:43 +02:00
6eff8e54f4 svg drawings + explanation of dispenser gears 2019-09-12 08:35:01 +02:00
e51d24e2ec collection of references 2019-09-12 08:33:42 +02:00
53c1ad07cf general notes for design of the prototype 2019-09-12 08:33:05 +02:00
b037d77545 first version of lasercut parts 2019-09-12 08:32:29 +02:00
c1d4f8e5cc FreeCAD script for creating dispenser shovels 2019-09-12 08:25:48 +02:00
0d0d52d5ac CAD models for dispensers 2019-09-12 08:25:09 +02:00
916fa74cb6 sketch for plate that as basis for modification in the circles.py script 2019-09-12 08:24:22 +02:00
8648e9fcd1 added code for cutting center hole and lines for assembling from multiple parts 2019-09-12 08:23:18 +02:00
850fe69847 output cuts for dispenser gears, markings for the placement of the gears and cut lines for assembly from multiple parts 2019-09-06 11:38:35 +02:00
8940f5965f started working on figuring out cuts for dispenser gears 2019-09-03 22:34:20 +02:00
f34775eb3f added svg output of circles 2019-09-03 10:38:23 +02:00
18 changed files with 2240 additions and 110 deletions

51
cad_script.py Normal file
View File

@ -0,0 +1,51 @@
from FreeCAD import Rotation, Base, newDocument
doc = newDocument()
def create_blade(radius_rod, diameter):
# set parameters (in mm)
# central rod
outer_radius = radius_rod
inner_radius = outer_radius / 2
height = diameter
# blades
thickness = 1.5
rod = Part.makeCylinder(outer_radius, height, Base.Vector(0,0,0), Base.Vector(1,0,0))
hole_template = Part.makeCylinder(inner_radius, height+2, Base.Vector(-1,0,0), Base.Vector(1,0,0))
pierced_rod = rod.cut(hole_template)
del hole_template # remove the template
# blades
blade_template = Part.makeCylinder(height/2, thickness, Base.Vector(height/2,0, -thickness/2))
#Part.show(blade_template)
blades1 = blade_template.cut(rod)
blades2 = blades1.copy()
blades2.Placement.Rotation = Rotation(0, 0, 60)
blades3 = blades1.copy()
blades3.Placement.Rotation = Rotation(0, 0, -60)
del blade_template # remove the template
# show all the stuff we created just now
Part.show(pierced_rod)
Part.show(blades1)
Part.show(blades2)
Part.show(blades3)
doc.recompute()
# small dispensers
radius_rod = 4.0
diameter = 34.0
create_blade(radius_rod, diameter)
# big dispensers
#radius_rod = 4.0
#diameter = 94.0
#create_blade(radius_rod, diameter)

0
prototype/__init__.py Normal file
View File

BIN
prototype/big.amf Normal file

Binary file not shown.

Binary file not shown.

View File

@ -3,7 +3,79 @@ import matplotlib.pyplot as plt
import math
import operator
N = 5 # number of enclosed circles
# scale in inkscape
# 1 unit = 0.283 mm
scale = 1000.0/282.222
def svg_circle(id, name, c, r):
# create circle object in svg notation
text = [' <circle\n',
' id="circle{}"\n'.format(id),
' inkscape:label="{}"\n'.format(name),
' style="fill:none;stroke:#000000;stroke-width:0.1mm"\n',
' r="{}mm"\n'.format(r),
' cy="{}mm"\n'.format(c[1]),
' cx="{}mm" />\n'.format(c[0])]
return text
def svg_half_circle(id, name, c, r, angle, orientation_flag=1):
# draws half a circle centered at c with radius r
# angle specifies how the half circle should be rotated
# for the default angle of zero, it draws the top half of the circle
# convert angle to radians
angle = angle/360.0 * 2.0 * np.pi
# compute starting point
v = np.array([np.cos(angle), np.sin(angle)])
begin = c + r * v # in millimeters
begin *= scale # in svg units
# compute end point
end = c - r * v # in millimeters
end *= scale # in svg units
radius_scaled = r * scale # radius in svg units
text = [' <path \n '
' id="path666" \n '
' style="fill:none;stroke:#ff0000;stroke-width:0.60000002" \n'
' d="M {} {} A {} {} 0 {} {} {} {}"'
' />\n'.format(begin[0], begin[1], radius_scaled, radius_scaled, orientation_flag, orientation_flag,
end[0], end[1])]
return text
def svg_arc(p1, p2, r, large_arc, sweep):
begin = p1 * scale
end = p2 * scale
radius_scaled = r * scale
text = [' <path \n '
' id="path666" \n '
' style="fill:none;stroke:#ff0000;stroke-width:0.60000002" \n'
' d="M {} {} A {} {} 0 {} {} {} {}"'
' />\n'.format(begin[0], begin[1], radius_scaled, radius_scaled, large_arc, sweep,
end[0], end[1])]
return text
def svg_rectangle(id, name, c, width, heigth, angle):
x = np.sqrt(c[0]**2 + c[1]**2) - width/2
y = - heigth
text = ['<g transform="rotate({})">\n '
'<rect x="{}mm" y="{}mm" width="{}mm" height="{}mm" style="fill:none;stroke-width:0.1mm;stroke:rgb(0,0,0)" />\n '
'</g>\n'
.format(angle, x, y ,width, heigth)]
return text
def svg_line(p1, p2, width=1.0):
text = ['<line x1="{}mm" y1="{}mm" x2="{}mm" y2="{}mm" style="stroke:rgb(0,0,0);stroke-width:{}mm" />'.format(p1[0], p1[1], p2[0], p2[1], width)]
return text
# this function reads and processes data for optimal circle packaging obtained form packomania.com
def read_circle_data(N):
@ -26,6 +98,7 @@ def read_circle_data(N):
return radii[N], coords
# this function sorts enclosed circle coordinates counter-clockwise w.r.t. the center point
# TODO: there is a problem when circles are present that are not touching the boundary of the enclosing circle (e.g. N = 7)
def sort_ccw(coords, center):
@ -56,146 +129,547 @@ def compute_tangent_points(p, c, r):
return (T1x, T1y), (T2x, T2y)
# read radius and center coordinates for enclosed circles
rtilde, coords = read_circle_data(N)
c = (0.0, 0.0) # center of big circle
R = 1.0 # radius of big circle
class PlateLayout:
def __init__(self, N, plate_radius):
self.N = N # number of enclosed circles
self.plate_radius = plate_radius
plt.xlim((-1, 1))
plt.ylim((-1, 1))
plt.gca().set_aspect('equal', 'box')
def compute_layout(self):
# read radius and center coordinates for enclosed circles
rtilde, coords = read_circle_data(self.N)
plt.ion()
plt.show()
c = (0.0, 0.0) # center of big circle
R = 1.0 # radius of big circle
for p in coords:
plt.plot(p[0], p[1], 'o')
circle = plt.Circle(p, rtilde, fill=False)
plt.gca().add_artist(circle)
circle = plt.Circle(c, R, fill=False)
plt.gca().add_artist(circle)
plt.xlim((-1, 1))
plt.ylim((-1, 1))
plt.gca().set_aspect('equal', 'box')
plt.plot(c[0], c[1], 'o')
plt.ion()
plt.show()
coords_2 = []
for k in range(0, N):
p1 = coords[k]
p2 = coords[(k+1) % N]
for p in coords:
plt.plot(p[0], p[1], 'o')
circle = plt.Circle(p, rtilde, fill=False)
plt.gca().add_artist(circle)
circle = plt.Circle(c, R, fill=False)
plt.gca().add_artist(circle)
# midpoint between center of two circles
m = np.mean([p1, p2], axis=0)
plt.plot(c[0], c[1], 'o')
# vector in direction of midpoint
v = m - np.array(c)
v = v/np.linalg.norm(v)
#plt.plot(m[0], m[1], 'o')
coords_2 = []
for k in range(0, self.N):
p1 = coords[k]
p2 = coords[(k+1) % self.N]
# midpoint between center of two circles
m = np.mean([p1, p2], axis=0)
# vector in direction of midpoint
v = m - np.array(c)
v = v/np.linalg.norm(v)
#plt.plot(m[0], m[1], 'o')
# optimization problem for computing position and radius for a maximal circle fitting in space between two big circles
# and being fully contained in enclosing circle
opti = casadi.Opti()
# optimization problem for computing position and radius for a maximal circle fitting in space between two big circles
# and being fully contained in enclosing circle
opti = casadi.Opti()
r = opti.variable(1) # radius of new circle
p = opti.variable(2) # center of new circle
lamb = opti.variable(1) # distance of center of new circle to center of enclosing circle
r = opti.variable(1) # radius of new circle
p = opti.variable(2) # center of new circle
lamb = opti.variable(1) # distance of center of new circle to center of enclosing circle
opti.minimize(-r)
opti.subject_to(p == c + v * lamb)
opti.subject_to((p[0] - p1[0])**2 + (p[1] - p1[1])**2 >= (rtilde + r)**2)
opti.subject_to(R == lamb + r)
opti.subject_to(r >= 0)
opti.subject_to(r <= R)
opti.minimize(-r)
opti.subject_to(p == c + v * lamb)
opti.subject_to((p[0] - p1[0])**2 + (p[1] - p1[1])**2 >= (rtilde + r)**2)
opti.subject_to(R == lamb + r)
opti.subject_to(r >= 0)
opti.subject_to(r <= R)
opti.solver('ipopt')
opti.solver('ipopt')
init_r = 0.1
init_lamb = R - init_r
init_p = c + v * init_lamb
init_r = 0.1
init_lamb = R - init_r
init_p = c + v * init_lamb
opti.set_initial(r, init_r)
opti.set_initial(p, init_p)
opti.set_initial(lamb, init_lamb)
opti.set_initial(r, init_r)
opti.set_initial(p, init_p)
opti.set_initial(lamb, init_lamb)
sol = opti.solve()
sol = opti.solve()
p = sol.value(p)
r = sol.value(r)
lamb = sol.value(lamb)
p = sol.value(p)
r = sol.value(r)
lamb = sol.value(lamb)
print("p = {}".format(p))
print("r = {}".format(r))
print("lambda = {}".format(lamb))
print("v = {}".format(v))
print("p = {}".format(p))
print("r = {}".format(r))
print("lambda = {}".format(lamb))
print("v = {}".format(v))
coords_2.append(p)
coords_2.append(p)
plt.plot(p[0], p[1], 'o')
circle = plt.Circle(p, r, fill=False)
plt.gca().add_artist(circle)
plt.plot(p[0], p[1], 'o')
circle = plt.Circle(p, r, fill=False)
plt.gca().add_artist(circle)
tube1 = {}
tube2 = {}
# postprocessing solution:
# - output radii for circles
# - output center coordinates, angle w.r.t. origin and distance from origin
outer_radius = self.plate_radius # desired plate radius in meters
tube1_radius = outer_radius * rtilde
tube2_radius = outer_radius * r
print("\n------------------")
print("optimal values")
print("plate radius = {:6.3} m = {:6.2f} mm".format(outer_radius / 1000, outer_radius))
print("big circles:")
print(" radius = {:6.3} m = {:6.2f} mm".format(tube1_radius / 1000, tube1_radius))
print(" diameter = {:6.3} m = {:6.2f} mm".format(2 * tube1_radius / 1000, 2 * tube1_radius))
print("small circles:")
print(" radius = {:6.3} m = {:6.2f} mm".format(tube2_radius, tube2_radius * 1000))
print(" diameter = {:6.3} m = {:6.2f} mm".format(2*tube2_radius, 2*tube2_radius * 1000))
# compute coordinates and various measurements for fixed radii of plate and tubes
self.target_plate_radius = 160.0
self.target_center_hole_radius = 7.5
self.target_radius_1 = 50.5
self.target_radius_2 = 20.0
teeth = 200
D = 2 * self.target_plate_radius
self.plate_module = D/teeth
print("plate radius = {:6.2f} mm".format(self.target_plate_radius))
print("big circle radius = {:6.2f} mm".format(self.target_radius_1))
print("small circle radius = {:6.2f} mm".format(self.target_radius_2))
print("number of teeth: N = {}".format(teeth))
print("pitch diameter: D = {} mm".format(D))
print("module: M = {} mm".format(self.plate_module))
# postprocessing solution:
# - output radii for circles
# - output center coordinates, angle w.r.t. origin and distance from origin
outer_radius = 0.15 # desired plate radius in meters
tube1_radius = outer_radius * rtilde
tube2_radius = outer_radius * r
# parameters for dispenser gears
self.dispenser_module = 1.0
dispenser_1_target_pitch_diameter_big = 50.0
dispenser_1_target_pitch_diameter_small = 15.0
dispenser_1_teeth_big = int(dispenser_1_target_pitch_diameter_big/self.dispenser_module)
dispenser_1_teeth_small = int(dispenser_1_target_pitch_diameter_small/ self.dispenser_module)
print("\n------------------")
print("plate radius = {:6.3} m = {:6.2f} mm".format(outer_radius, outer_radius * 1000))
print("big circles:")
print(" radius = {:6.3} m = {:6.2f} mm".format(tube1_radius, tube1_radius * 1000))
print(" diameter = {:6.3} m = {:6.2f} mm".format(2*tube1_radius, 2*tube1_radius * 1000))
print(" coordinates:")
for k in range(0,N):
x = coords[k][0] * 1000
y = coords[k][1] * 1000
dispenser_1_pitch_diameter_big = self.dispenser_module * dispenser_1_teeth_big
dispenser_1_outer_diameter_big = dispenser_1_pitch_diameter_big + 2 * self.dispenser_module
dispenser_1_pitch_diameter_small = self.dispenser_module * dispenser_1_teeth_small
dispenser_1_outer_diameter_small = dispenser_1_pitch_diameter_small + 2 * self.dispenser_module
t1, t2 = compute_tangent_points((0,0),(x,y), rtilde * 1000)
plt.plot(t1[0] / 1000, t1[1] / 1000, 'o')
plt.plot(t2[0] / 1000, t2[1] / 1000, 'o')
dispenser_2_target_pitch_diameter_big = 20.0
dispenser_2_target_pitch_diameter_small = 15.0
dispenser_2_teeth_big = int(dispenser_2_target_pitch_diameter_big / self.dispenser_module)
dispenser_2_teeth_small = int(dispenser_2_target_pitch_diameter_small / self.dispenser_module)
angle = arctan2(y,x) * 360.0 / (2.0 * math.pi)
dist = (x**2 + y**2)**0.5
dispenser_2_pitch_diameter_big = self.dispenser_module * dispenser_2_teeth_big
dispenser_2_outer_diameter_big = dispenser_2_pitch_diameter_big + 2 * self.dispenser_module
dispenser_2_pitch_diameter_small = self.dispenser_module * dispenser_2_teeth_small
dispenser_2_outer_diameter_small = dispenser_2_pitch_diameter_small + 2 * self.dispenser_module
print("parameters for dispenser gears:")
print(" big container:")
print(" module = {}".format(self.dispenser_module))
print(" pitch diameter big gear = {}".format(dispenser_1_pitch_diameter_big))
print(" number of teeth big gear = {}".format(dispenser_1_teeth_big))
print(" pitch diameter small gear = {}".format(dispenser_1_pitch_diameter_small))
print(" number of teeth small gear = {}".format(dispenser_1_teeth_small))
print(" small container:")
print(" module = {}".format(self.dispenser_module))
print(" pitch diameter big gear = {}".format(dispenser_2_pitch_diameter_big))
print(" number of teeth big gear = {}".format(dispenser_2_teeth_big))
print(" pitch diameter small gear = {}".format(dispenser_2_pitch_diameter_small))
print(" number of teeth small gear = {}".format(dispenser_2_teeth_small))
angle_t1 = arctan2(t1[1], t1[0]) * 360.0 / (2.0 * math.pi)
dist_t1 = (t1[0] ** 2 + t1[1] ** 2) ** 0.5
# plot plate
plt.figure(2)
plt.plot(0.0, 0.0, 'o')
circle = plt.Circle((0.0, 0.0), self.target_plate_radius, fill=False)
plt.gca().add_artist(circle)
plt.xlim((-self.target_plate_radius*1.1, self.target_plate_radius*1.1))
plt.ylim((-self.target_plate_radius*1.1, self.target_plate_radius*1.1))
plt.gca().set_aspect('equal', 'box')
angle_t2 = arctan2(t2[1], t2[0]) * 360.0 / (2.0 * math.pi)
dist_t2 = (t2[0] ** 2 + t2[1] ** 2) ** 0.5
print(" k = {}, (x,y) = ({:8.3f}, {:8.3f}), angle = {:8.3f} deg, dist = {:8.3f} mm".format(k, x, y, angle, dist))
print(" t1 = ({:8.3f}, {:8.3f}), angle = {:8.3f} deg, dist = {:8.3f} mm".format(t1[0], t1[1], angle_t1,
dist_t1))
print(" t2 = ({:8.3f}, {:8.3f}), angle = {:8.3f} deg, dist = {:8.3f} mm".format(t2[0], t2[1], angle_t2,
dist_t2))
print("\n")
# plate coordinates
print("plate coordinates: (x,y) = ({:8.3f}, {:8.3f})".format(0.0, 0.0))
print("small circles:")
print(" radius = {:6.3} m = {:6.2f} mm".format(tube2_radius, tube2_radius * 1000))
print(" diameter = {:6.3} m = {:6.2f} mm".format(2*tube2_radius, 2*tube2_radius * 1000))
print(" coordinates:")
for k in range(0,N):
x = coords_2[k][0] * 1000
y = coords_2[k][1] * 1000
self.tube_1_coords = {}
self.tube_2_coords = {}
self.tube_1_angles = {}
self.tube_2_angles = {}
self.tube_1_tangents = {}
self.tube_1_tangent_angles = {}
self.tube_1_cuts = {}
self.tube_2_tangents = {}
self.tube_2_tangent_angles = {}
self.tube_2_cuts = {}
t1, t2 = compute_tangent_points((0, 0), (x, y), r * 1000)
plt.plot(t1[0] / 1000, t1[1] / 1000, 'o')
plt.plot(t2[0] / 1000, t2[1] / 1000, 'o')
print(" big circle coordinates:")
for k in range(0,self.N):
x = coords[k][0] * outer_radius
y = coords[k][1] * outer_radius
angle = arctan2(y, x) * 360.0 / (2.0 * math.pi)
dist = (x ** 2 + y ** 2) ** 0.5
angle = arctan2(y, x) * 360.0 / (2.0 * math.pi)
angle_t1 = arctan2(t1[1], t1[0]) * 360.0 / (2.0 * math.pi)
dist_t1 = (t1[0] ** 2 + t1[1] ** 2) ** 0.5
self.tube_1_coords[k] = (x,y)
self.tube_1_angles[k] = angle
angle_t2 = arctan2(t2[1], t2[0]) * 360.0 / (2.0 * math.pi)
dist_t2 = (t2[0] ** 2 + t2[1] ** 2) ** 0.5
print(" k = {}, (x,y) = ({:8.3f}, {:8.3f}), angle = {:8.3f} deg, dist = {:8.3f} mm".format(k, x, y, angle, dist))
print(" t1 = ({:8.3f}, {:8.3f}), angle = {:8.3f} deg, dist = {:8.3f} mm".format(t1[0], t1[1], angle_t1,
dist_t1))
print(" t2 = ({:8.3f}, {:8.3f}), angle = {:8.3f} deg, dist = {:8.3f} mm".format(t2[0], t2[1], angle_t2,
dist_t2))
print(" k = {}, (x,y) = ({:8.3f}, {:8.3f}), angle = {:8.3f} deg".format(k, x, y, angle))
circle = plt.Circle((x,y), self.target_radius_1, fill=False)
plt.gca().add_artist(circle)
p1 = dispenser_1_pitch_diameter_big
p2 = dispenser_1_pitch_diameter_small
a1 = self.dispenser_module
a2 = self.dispenser_module
offset_1 = sqrt((p1 / 2 + p2 / 2) ** 2 - (p1 / 2 + a1) ** 2) - p2 / 2 - a2
print("dispenser 1 offset = {}".format(offset_1))
print(" big circle tangent points: ")
for k in range(0, self.N):
x = coords[k][0] * outer_radius
y = coords[k][1] * outer_radius
t1, t2 = compute_tangent_points((0, 0), (x, y), self.target_radius_1)
angle1_rad = arctan2(t1[1], t1[0])
angle2_rad = arctan2(t2[1], t2[0])
angle1_deg = angle1_rad * 360.0 / (2.0 * math.pi)
angle2_deg = angle2_rad * 360.0 / (2.0 * math.pi)
self.tube_1_tangents[k] = (t1, t2)
self.tube_1_tangent_angles[k] = (angle1_deg, angle2_deg)
print(
" k = {}, t1 = ({:8.3f}, {:8.3f}), angle = {:8.3f} deg\n t2 = ({:8.3f}, {:8.3f}), angle "
"= {:8.3f} deg".format(k, t1[0], t1[1], angle1_deg, t2[0], t2[1], angle2_deg))
plt.plot(t1[0], t1[1], 'o')
plt.plot(t2[0], t2[1], 'o')
## compute position of cut for dispenser gear
# vector pointing from center in direction of tangent point
v = np.array([math.cos(angle1_rad), math.sin(angle1_rad)])
cut_center = np.array(t1) - v * (offset_1 + dispenser_1_outer_diameter_small/2.0)
self.tube_1_cuts[k] = {}
self.tube_1_cuts[k]['center'] = cut_center
self.tube_1_cuts[k]['tangent_point'] = t1
self.tube_1_cuts[k]['angle_deg'] = angle1_deg
self.tube_1_cuts[k]['length'] = dispenser_1_outer_diameter_small
self.tube_1_cuts[k]['width'] = 5.0
plt.plot(cut_center[0], cut_center[1], 'o')
pass
print(" small circle coordinates:")
for k in range(0,self.N):
x = coords_2[k][0] * outer_radius
y = coords_2[k][1] * outer_radius
angle = arctan2(y, x) * 360.0 / (2.0 * math.pi)
self.tube_2_coords[k] = (x, y)
self.tube_2_angles[k] = angle
print(" k = {}, (x,y) = ({:8.3f}, {:8.3f}), angle = {:8.3f} deg".format(k, x, y, angle))
circle = plt.Circle((x, y), self.target_radius_2, fill=False)
plt.gca().add_artist(circle)
p1 = dispenser_2_pitch_diameter_big
p2 = dispenser_2_pitch_diameter_small
a1 = self.dispenser_module
a2 = self.dispenser_module
offset_2 = sqrt((p1 / 2 + p2 / 2) ** 2 - (p1 / 2 + a1) ** 2) - p2 / 2 - a2
print("dispenser 2 offset = {}".format(offset_2))
print(" small circle tangent points: ")
for k in range(0, self.N):
x = coords_2[k][0] * outer_radius
y = coords_2[k][1] * outer_radius
t1, t2 = compute_tangent_points((0, 0), (x, y), self.target_radius_2)
angle1_rad = arctan2(t1[1], t1[0])
angle2_rad = arctan2(t2[1], t2[0])
angle1_deg = angle1_rad * 360.0 / (2.0 * math.pi)
angle2_deg = angle2_rad * 360.0 / (2.0 * math.pi)
self.tube_2_tangents[k] = (t1, t2)
self.tube_2_tangent_angles[k] = (angle1_deg, angle2_deg)
print(" k = {}, t1 = ({:8.3f}, {:8.3f}), angle = {:8.3f} deg\n t2 = ({:8.3f}, {:8.3f}), angle "
"= {:8.3f} deg".format(k, t1[0], t1[1], angle1_deg, t2[0], t2[1], angle2_deg))
plt.plot(t1[0], t1[1], 'o')
plt.plot(t2[0], t2[1], 'o')
## compute position of cut for dispenser gear
# vector pointing from center in direction of tangent point
v = np.array([math.cos(angle1_rad), math.sin(angle1_rad)])
cut_center = np.array(t1) + v * (offset_2 + dispenser_2_outer_diameter_small/2.0)
self.tube_2_cuts[k] = {}
self.tube_2_cuts[k]['center'] = cut_center
self.tube_2_cuts[k]['tangent_point'] = t1
self.tube_2_cuts[k]['angle_deg'] = angle1_deg
self.tube_2_cuts[k]['length'] = dispenser_2_outer_diameter_small
self.tube_2_cuts[k]['width'] = 5.0
plt.plot(cut_center[0], cut_center[1], 'o')
pass
pass
"""
input: file = svg with plate gear centered at (0,0)
"""
def generate_svg(self, file):
f = open(file)
f_lines = f.readlines()
f.close()
circle_found = False
for k in range(len(f_lines)):
current_line = f_lines[k]
if 'transform' in current_line:
# rotate gear such that teeth match the cut lines
index = current_line.find('"\n')
f_lines[k] = current_line[0:index] + " rotate(0.9)" + current_line[-2:]
if 'd="m ' in current_line:
# remove center whole drawn by gear-dev
gear_data = current_line
index = gear_data.find('z') # end of path containing gear outline coordinates
f_lines[k] = gear_data[0:index+1] + gear_data[-2:]
if '<circle' in current_line:
circle_found = True
if circle_found and 'r=' in current_line:
# adjust center hole radius
f_lines[k] = ' r="{}mm"\n'.format(self.target_center_hole_radius)
# delete last line with </svg> command
f_lines.remove(f_lines[-1])
# output plate as svg
text = svg_circle(0, 'plate', (0,0), self.target_plate_radius)
f_lines = f_lines + text
output_all = False
if output_all:
f_lines = self.output_whole(f_lines)
else:
f_lines = self.output_segment(f_lines, 2)
f_lines.append('</svg>\n')
# write new svg image
fw = open('output.svg', 'w')
fw.writelines(f_lines)
fw.close()
pass
def output_segment(self, f_lines, k):
# k = which segment?
k_next = (k + 1) % 5
# center hole
a = self.tube_1_angles[k]
a = a / 360.0 * 2.0 * np.pi
vunit = np.array([np.cos(a), np.sin(a)])
p1 = vunit * self.target_center_hole_radius
a2 = self.tube_1_angles[k_next]
a2 = a2 / 360.0 * 2.0 * np.pi
vunit2 = np.array([np.cos(a2), np.sin(a2)])
p2 = vunit2 * self.target_center_hole_radius
text = svg_arc(p1, p2, self.target_center_hole_radius, 0, 1)
f_lines = f_lines + text
# big circles arcs
c = self.tube_1_coords[k]
angle = self.tube_1_angles[k]
text = svg_half_circle(k, 'big circle', c, self.target_radius_1, angle)
f_lines = f_lines + text
c = self.tube_1_coords[k_next]
angle = self.tube_1_angles[k_next]
text = svg_half_circle(k_next, 'big circle', c, self.target_radius_1, angle, orientation_flag=0)
f_lines = f_lines + text
# small circle
c = self.tube_2_coords[k]
text = svg_circle(k, 'small circle', c, self.target_radius_2)
f_lines = f_lines + text
# gear pos for big circle
c = self.tube_1_tangents[k_next]
circle_midpoint = self.tube_1_coords[k_next]
v = np.array(c[0]) - np.array(circle_midpoint)
v = v / np.linalg.norm(v)
marking_length = 5.0
p1 = c[0]
p2 = c[0] + v * marking_length
text = svg_line(p1, p2)
f_lines = f_lines + text
# rectangle for big circles
c = self.tube_1_cuts[k_next]
text = svg_rectangle(k_next, 'cut', c['center'], c['length'], c['width'], c['angle_deg'])
f_lines = f_lines + text
# gear pos for small circle
c = self.tube_2_tangents[k]
circle_midpoint = self.tube_2_coords[k]
v = np.array(c[0]) - np.array(circle_midpoint)
v = v/np.linalg.norm(v)
marking_length = 5.0
p1 = c[0]
p2 = c[0] + v * marking_length
text = svg_line(p1, p2)
f_lines = f_lines + text
# rectangle for small circles
c = self.tube_2_cuts[k]
text = svg_rectangle(k, 'cut', c['center'], c['length'], c['width'], c['angle_deg'])
f_lines = f_lines + text
# segment border (right)
a = self.tube_1_angles[k]
a = a / 360.0 * 2.0 * np.pi
r1 = np.linalg.norm(np.array(self.tube_1_coords[k])) - self.target_radius_1
vunit = np.array([np.cos(a), np.sin(a)])
p1 = vunit * self.target_center_hole_radius
p2 = vunit * r1
text = svg_line(p1, p2, 0.1)
f_lines = f_lines + text
r2 = np.linalg.norm(np.array(self.tube_1_coords[k])) + self.target_radius_1
p3 = vunit * r2
r3 = self.target_plate_radius - self.plate_module
p4 = vunit * r3
text = svg_line(p3, p4, 0.1)
f_lines = f_lines + text
# segment border (left)
a = self.tube_1_angles[k_next]
a = a / 360.0 * 2.0 * np.pi
r1 = np.linalg.norm(np.array(self.tube_1_coords[k_next])) - self.target_radius_1
vunit = np.array([np.cos(a), np.sin(a)])
p1 = vunit * self.target_center_hole_radius
p2 = vunit * r1
text = svg_line(p1, p2, 0.1)
f_lines = f_lines + text
r2 = np.linalg.norm(np.array(self.tube_1_coords[k_next])) + self.target_radius_1
p3 = vunit * r2
r3 = self.target_plate_radius - self.plate_module
p4 = vunit * r3
text = svg_line(p3, p4, 0.1)
f_lines = f_lines + text
return f_lines
def output_whole(self, f_lines):
# output big circles as svg
for k, c in self.tube_1_coords.items():
text = svg_circle(k, 'big circle', c, self.target_radius_1)
f_lines = f_lines + text
pass
# output small circles as svg
for k, c in self.tube_2_coords.items():
text = svg_circle(k, 'small circle', c, self.target_radius_2)
f_lines = f_lines + text
pass
# gear markings for big cirlces and small circles
for k, c in self.tube_1_tangents.items():
circle_midpoint = self.tube_1_coords[k]
v = np.array(c[0]) - np.array(circle_midpoint)
v = v/np.linalg.norm(v)
marking_length = 5.0
p1 = c[0]
p2 = c[0] + v * marking_length
text = svg_line(p1, p2)
f_lines = f_lines + text
for k, c in self.tube_2_tangents.items():
circle_midpoint = self.tube_2_coords[k]
v = np.array(c[0]) - np.array(circle_midpoint)
v = v/np.linalg.norm(v)
marking_length = 5.0
p1 = c[0]
p2 = c[0] + v * marking_length
text = svg_line(p1, p2)
f_lines = f_lines + text
pass
# output cuts for big circles
for k, c in self.tube_1_cuts.items():
text = svg_rectangle(k, 'cut', c['center'], c['length'], c['width'], c['angle_deg'])
f_lines = f_lines + text
pass
# output cuts for small circles
for k, c in self.tube_2_cuts.items():
text = svg_rectangle(k, 'cut', c['center'], c['length'], c['width'], c['angle_deg'])
f_lines = f_lines + text
pass
# lines for manufacturing out of multiple pieces
for k, a in self.tube_1_angles.items():
a = a/360.0 * 2.0 * np.pi
r1 = np.linalg.norm(np.array(self.tube_1_coords[k])) - self.target_radius_1
vunit = np.array([np.cos(a), np.sin(a)])
p1 = vunit * self.target_center_hole_radius
p2 = vunit * r1
text = svg_line(p1, p2, 0.1)
f_lines = f_lines + text
r2 = np.linalg.norm(np.array(self.tube_1_coords[k])) + self.target_radius_1
p3 = vunit * r2
r3 = self.target_plate_radius - self.plate_module
p4 = vunit * r3
text = svg_line(p3, p4, 0.1)
f_lines = f_lines + text
pass
return f_lines
pass

386
prototype/cut_v1.svg Normal file

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 96 KiB

172
prototype/cut_v1_part.svg Normal file

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 27 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 82 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 140 KiB

18
prototype/notes.txt Normal file
View File

@ -0,0 +1,18 @@
27.08.2019:
Next step: create template for lasercutter consisting of multiple segments (utilize rotation symmetry of the pieces -> compose plate of several segments)
11.09.2019:
Radius for big containers was extendend a bit, because tubes seem to be bigger than 10cm in diameter
Lasercut segments for plate. Profile: FLB_Sperrholz_4mm_Natur_new
Important: SVG produced by python script needs to be openend, transformed and saved in inkscape, otherwise import in CorelDraw fails
In progress:
- automate generation of plate segment
TODO:
- stack 2 plates for better stability (add cuts at small circles)
- second ring above the first plate to fix the containers and hide the gear mechanic (or manufacure them from acrylic to show the mechanic)
- think about if stacked plate is to thick for a single gear (i.e. we may need two gears in order to transfer motion from below the plate to dispensers)
- shovels for dispensers by cutting segments from a sphere
- connectors for segments (jigsaw puzzle style)

56
prototype/plate.py Normal file
View File

@ -0,0 +1,56 @@
import os
from FreeCAD import Rotation, Base, newDocument
os.chdir('/home/bt304019/programming/imaginaerraum/cerealist/prototype')
from circles import PlateLayout
N = 5
plate_radius = 150.0
plate_layout = PlateLayout(N, plate_radius)
tube1, tube2 = plate_layout.compute_layout()
print("tube1 = {}".format(tube1))
print("tube2 = {}".format(tube2))
# use slightly smaller radius so we have some gap
tube1['radius'] = 50.0
tube2['radius'] = 20.0
doc = newDocument()
# set parameters (in mm)
height = 1.0
# create plate
plate = Part.makeCylinder(plate_radius, height, Base.Vector(0,0,0), Base.Vector(0,0,1))
r = tube1['radius']
for k in range(0,len(tube1['coords'].values())):
print(k)
v = Base.Vector(tube1['coords'][k][0], tube1['coords'][k][1], -1)
big_circle_template = Part.makeCylinder(tube1['radius'], height+2, v, Base.Vector(0,0,1))
plate = plate.cut(big_circle_template)
del big_circle_template # remove the template
Part.show(plate)
# blades
blade_template = Part.makeCylinder(height/2, thickness, Base.Vector(height/2,0, -thickness/2))
#Part.show(blade_template)
blades1 = blade_template.cut(rod)
blades2 = blades1.copy()
blades2.Placement.Rotation = Rotation(0, 0, 90)
del blade_template # remove the template
# show all the stuff we created just now
Part.show(pierced_rod)
Part.show(blades1)
Part.show(blades2)
doc.recompute()

142
prototype/plate_gear_v1.svg Normal file

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 24 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 89 KiB

Binary file not shown.

BIN
prototype/small.amf Normal file

Binary file not shown.

Binary file not shown.

5
prototype/test.py Normal file
View File

@ -0,0 +1,5 @@
from circles import PlateLayout
p = PlateLayout(5, 150.0)
p.compute_layout()
p.generate_svg('plate_sketch.svg')

7
references.txt Normal file
View File

@ -0,0 +1,7 @@
https://en.wikipedia.org/wiki/Circle_packing_in_a_circle
https://geargenerator.com/
http://hessmer.org/gears/InvoluteSpurGearBuilder.html
https://forum.linuxcnc.org/31-cad-cam/36773-freecad-gear-modeling-and-design