Compare commits

...

3 Commits

View File

@ -5,7 +5,7 @@ import operator
# scale in inkscape
# 1 unit = 0.283 mm
scale = 1000.0/282.222
svg_scale = 1000.0/282.222
def svg_circle(id, name, c, r):
# create circle object in svg notation
@ -48,12 +48,12 @@ def svg_puzzle(p, size, angle):
p4 = p - size * v1
# convert to svg units
p1 *= scale
p2 *= scale
p3 *= scale
p4 *= scale
p1 *= svg_scale
p2 *= svg_scale
p3 *= svg_scale
p4 *= svg_scale
radius_scaled = 1.25 * size * scale
radius_scaled = 1.25 * size * svg_scale
text = [' <path \n '
' id="path666" \n '
@ -63,6 +63,60 @@ def svg_puzzle(p, size, angle):
return text
def svg_line_puzzle(start, end, puzzle_scale=1.0, linewidth=0.50):
# draws a line from start to end with a simple jigsaw puzzle style cutout in the middle
# the size of the cutout can be controlled with the puzzle_scale parameter
# compute points
"""
v1 and v2 are orthogonal vectors
construction of points (starting at p (middle between start and end)):
p2 ------- 2 v1 -----> p3
^
|
v2
|
|
start --- p1 <-- -v1 -- p -- v1 --> p4 --- end
then between points p2 and p3 with draw an arc
"""
v = end - start
dist = np.linalg.norm(v)
size = dist / 10.0 * puzzle_scale # size of the cutout
v = v / dist
angle = math.atan2(v[1], v[0]) # angle of v
# midpoint between start and end
p = np.mean([start, end], axis=0)
v1 = np.array([np.cos(angle), np.sin(angle)])
v2 = np.array([v1[1], -v1[0]])
p1 = p - size * v1
p2 = p1 + size * v2
p3 = p2 + 2.0 * size * v1
p4 = p + size * v1
# convert to svg units
p1 *= svg_scale
p2 *= svg_scale
p3 *= svg_scale
p4 *= svg_scale
start *= svg_scale
end *= svg_scale
radius_scaled = 1.25 * size * svg_scale
text = [' <path \n '
' id="path666" \n '
' style="fill:none;stroke:#000000;stroke-width:{}mm" \n'
' d="M {} {} L {} {} L {} {} A {} {} 0 1 1 {} {} L {} {} L {} {}"'
' />\n'.format(linewidth, start[0], start[1], p1[0], p1[1], p2[0], p2[1], radius_scaled, radius_scaled,
p3[0], p3[1], p4[0], p4[1], end[0], end[1])]
return text
def svg_half_circle(id, name, c, r, angle, orientation_flag=1):
# draws half a circle centered at c with radius r
# angle specifies how the half circle should be rotated
@ -74,17 +128,17 @@ def svg_half_circle(id, name, c, r, angle, orientation_flag=1):
# compute starting point
v = np.array([np.cos(angle), np.sin(angle)])
begin = c + r * v # in millimeters
begin *= scale # in svg units
begin *= svg_scale # in svg units
# compute end point
end = c - r * v # in millimeters
end *= scale # in svg units
end *= svg_scale # in svg units
radius_scaled = r * scale # radius in svg units
radius_scaled = r * svg_scale # radius in svg units
text = [' <path \n '
' id="path666" \n '
' style="fill:none;stroke:#ff0000;stroke-width:0.60000002" \n'
' style="fill:none;stroke:#000000;stroke-width:0.60000002" \n'
' d="M {} {} A {} {} 0 {} {} {} {}"'
' />\n'.format(begin[0], begin[1], radius_scaled, radius_scaled, orientation_flag, orientation_flag,
end[0], end[1])]
@ -92,12 +146,12 @@ def svg_half_circle(id, name, c, r, angle, orientation_flag=1):
return text
def svg_arc(p1, p2, r, large_arc, sweep):
begin = p1 * scale
end = p2 * scale
radius_scaled = r * scale
begin = p1 * svg_scale
end = p2 * svg_scale
radius_scaled = r * svg_scale
text = [' <path \n '
' id="path666" \n '
' style="fill:none;stroke:#ff0000;stroke-width:0.60000002" \n'
' style="fill:none;stroke:#000000;stroke-width:0.60000002" \n'
' d="M {} {} A {} {} 0 {} {} {} {}"'
' />\n'.format(begin[0], begin[1], radius_scaled, radius_scaled, large_arc, sweep,
end[0], end[1])]
@ -535,7 +589,7 @@ class PlateLayout:
def output_segment(self, f_lines, k):
# k = which segment?
k_next = (k + 1) % 5
k_next = (k + 1) % self.N
# center hole
a = self.tube_1_angles[k]
@ -613,18 +667,18 @@ class PlateLayout:
vunit = np.array([np.cos(a), np.sin(a)])
p1 = vunit * self.target_center_hole_radius
p2 = vunit * r1
text = svg_line(p1, p2, 0.1)
#text = svg_line(p1, p2, 0.1)
text = svg_line_puzzle(p1, p2)
f_lines = f_lines + text
r2 = np.linalg.norm(np.array(self.tube_1_coords[k])) + self.target_radius_1
p3 = vunit * r2
r3 = self.target_plate_radius - self.plate_module
p4 = vunit * r3
text = svg_line(p3, p4, 0.1)
text = svg_line_puzzle(p3, p4)
#text = svg_line(p3, p4, 0.1)
f_lines = f_lines + text
outer_point_1 = p4
# segment border (left)
a = self.tube_1_angles[k_next]
a = a / 360.0 * 2.0 * np.pi
@ -632,17 +686,26 @@ class PlateLayout:
vunit = np.array([np.cos(a), np.sin(a)])
p1 = vunit * self.target_center_hole_radius
p2 = vunit * r1
text = svg_line(p1, p2, 0.1)
#text = svg_line(p1, p2, 0.1)
text = svg_line_puzzle(p1, p2)
f_lines = f_lines + text
r2 = np.linalg.norm(np.array(self.tube_1_coords[k_next])) + self.target_radius_1
p3 = vunit * r2
r3 = self.target_plate_radius - self.plate_module
p4 = vunit * r3
text = svg_line(p3, p4, 0.1)
#text = svg_line(p3, p4, 0.1)
text = svg_line_puzzle(p3, p4)
f_lines = f_lines + text
outer_point_2 = p4
r_pitch_minus_module = self.target_plate_radius - self.plate_module
a1 = (self.tube_1_angles[k] - 0.9) / 360.0 * 2.0 * np.pi
vunit1 = np.array([np.cos(a1), np.sin(a1)])
outer_point_1 = vunit1 * r_pitch_minus_module
a2 = (self.tube_1_angles[k_next] - 0.9) / 360.0 * 2.0 * np.pi
vunit2 = np.array([np.cos(a2), np.sin(a2)])
outer_point_2 = vunit2 * r_pitch_minus_module
# truncate gear path
for j in range(len(f_lines)):
@ -663,8 +726,25 @@ class PlateLayout:
coordinates.append(c_running)
pass
dist_1 = [np.linalg.norm(c - outer_point_1*scale) for c in coordinates]
dist_2 = [np.linalg.norm(c - outer_point_2 * scale) for c in coordinates]
dist_1 = [np.linalg.norm(c - outer_point_1 * svg_scale) for c in coordinates]
dist_2 = [np.linalg.norm(c - outer_point_2 * svg_scale) for c in coordinates]
min_dist_index_1 = np.argmin(dist_1)
min_dist_index_2 = np.argmin(dist_2)
if min_dist_index_2 > min_dist_index_1:
coordinates = coordinates[min_dist_index_1:min_dist_index_2+1]
else:
coordinates = coordinates[min_dist_index_1:] + coordinates[0:min_dist_index_2]
print("TODO: check this")
coordinates_data_raw_new = "".join(['{},{} '.format(c[0], c[1]) for c in coordinates])
gear_data_new = gear_data[0:index_start] + "M " + coordinates_data_raw_new + gear_data[index_end+1:]
f_lines[j] = gear_data_new
# find minimum distance and keep only points between the two distances
# problem: does not consider manual rotation of the plate
@ -674,11 +754,6 @@ class PlateLayout:
pass
#f_lines[k] = gear_data[0:index+1] + gear_data[-2:]
c = self.tube_1_coords[k]
angle = self.tube_1_angles[k]
text = svg_puzzle(c, 4, angle)
f_lines = f_lines + text
return f_lines
def output_whole(self, f_lines):