from casadi import * import matplotlib.pyplot as plt import math import operator N = 7 # number of enclosed circles # this function reads and processes data for optimal circle packaging obtained form packomania.com def read_circle_data(N): coords_raw = open('cci/cci{}.txt'.format(N)) radii_raw = open('cci/radii.txt'.format(N)) coords_raw = coords_raw.readlines() coords_raw = [c.split() for c in coords_raw if c[0] != '#'] coords = {} for c in coords_raw: coords[int(c[0])] = (float(c[1]), float(c[2])) coords = sort_ccw(coords, (0,0)) radii_raw = radii_raw.readlines() radii_raw = [r.split() for r in radii_raw if r[0] != '#'] radii = {} for r in radii_raw: radii[int(r[0])] = float(r[1]) return radii[N], coords # this function sorts enclosed circle coordinates counter-clockwise w.r.t. the center point # TODO: there is a problem when circles are present that are not touching the boundary of the enclosing circle (e.g. N = 7) def sort_ccw(coords, center): a = {} for c in coords: a[c] = math.atan2(coords[c][1] - center[1], coords[c][0] - center[0]) a_sort = sorted(a.items(), key=operator.itemgetter(1)) coords_sort = [] for a in a_sort: coords_sort.append(coords[a[0]]) return coords_sort # read radius and center coordinates for enclosed circles rtilde, coords = read_circle_data(N) c = (0.0, 0.0) # center of big circle R = 1.0 # radius of big circle plt.xlim((-1, 1)) plt.ylim((-1, 1)) plt.gca().set_aspect('equal', 'box') plt.ion() plt.show() for p in coords: plt.plot(p[0], p[1], 'o') circle = plt.Circle(p, rtilde, fill=False) plt.gca().add_artist(circle) circle = plt.Circle(c, R, fill=False) plt.gca().add_artist(circle) plt.plot(c[0], c[1], 'o') for k in range(0, N): p1 = coords[k] p2 = coords[(k+1) % N] # midpoint between center of two circles m = np.mean([p1, p2], axis=0) # vector in direction of midpoint v = m - np.array(c) v = v/np.linalg.norm(v) plt.plot(m[0], m[1], 'o') opti = casadi.Opti() r = opti.variable(1) # radius of new circle p = opti.variable(2) # center of new circle lamb = opti.variable(1) opti.minimize(-r) opti.subject_to(p == c + v * lamb) opti.subject_to((p[0] - p1[0])**2 + (p[1] - p1[1])**2 >= (rtilde + r)**2) opti.subject_to(R == lamb + r) opti.subject_to(r >= 0) opti.subject_to(r <= R) opti.solver('ipopt') init_r = 0.1 init_lamb = R - init_r init_p = c + v * init_lamb opti.set_initial(r, init_r) opti.set_initial(p, init_p) opti.set_initial(lamb, init_lamb) sol = opti.solve() p = sol.value(p) r = sol.value(r) lamb = sol.value(lamb) print("p = {}".format(p)) print("r = {}".format(r)) print("lambda = {}".format(lamb)) print("v = {}".format(v)) plt.plot(p[0], p[1], 'o') circle = plt.Circle(p, r, fill=False) plt.gca().add_artist(circle) pass