MuesliMix/prototype/circles.py

201 lines
6.8 KiB
Python

from casadi import *
import matplotlib.pyplot as plt
import math
import operator
N = 5 # number of enclosed circles
# this function reads and processes data for optimal circle packaging obtained form packomania.com
def read_circle_data(N):
coords_raw = open('cci/cci{}.txt'.format(N))
radii_raw = open('cci/radii.txt'.format(N))
coords_raw = coords_raw.readlines()
coords_raw = [c.split() for c in coords_raw if c[0] != '#']
coords = {}
for c in coords_raw:
coords[int(c[0])] = (float(c[1]), float(c[2]))
coords = sort_ccw(coords, (0,0))
radii_raw = radii_raw.readlines()
radii_raw = [r.split() for r in radii_raw if r[0] != '#']
radii = {}
for r in radii_raw:
radii[int(r[0])] = float(r[1])
return radii[N], coords
# this function sorts enclosed circle coordinates counter-clockwise w.r.t. the center point
# TODO: there is a problem when circles are present that are not touching the boundary of the enclosing circle (e.g. N = 7)
def sort_ccw(coords, center):
a = {}
for c in coords:
a[c] = math.atan2(coords[c][1] - center[1], coords[c][0] - center[0])
a_sort = sorted(a.items(), key=operator.itemgetter(1))
coords_sort = []
for a in a_sort:
coords_sort.append(coords[a[0]])
return coords_sort
# compute the two tangential points at the circle with center c and radius r intersecting the point p
def compute_tangent_points(p, c, r):
b = sqrt((p[0] - c[0]) ** 2 + (p[1] - c[1]) ** 2)
th = acos(r / b) # angle theta
d = atan2(p[1] - c[1], p[0] - c[0]) # direction angle of point p from c
d1 = d + th # direction angle of point T1 from c
d2 = d - th # direction angle of point T2 from c
T1x = c[0] + r * cos(d1)
T1y = c[1] + r * sin(d1)
T2x = c[0] + r * cos(d2)
T2y = c[1] + r * sin(d2)
return (T1x, T1y), (T2x, T2y)
# read radius and center coordinates for enclosed circles
rtilde, coords = read_circle_data(N)
c = (0.0, 0.0) # center of big circle
R = 1.0 # radius of big circle
plt.xlim((-1, 1))
plt.ylim((-1, 1))
plt.gca().set_aspect('equal', 'box')
plt.ion()
plt.show()
for p in coords:
plt.plot(p[0], p[1], 'o')
circle = plt.Circle(p, rtilde, fill=False)
plt.gca().add_artist(circle)
circle = plt.Circle(c, R, fill=False)
plt.gca().add_artist(circle)
plt.plot(c[0], c[1], 'o')
coords_2 = []
for k in range(0, N):
p1 = coords[k]
p2 = coords[(k+1) % N]
# midpoint between center of two circles
m = np.mean([p1, p2], axis=0)
# vector in direction of midpoint
v = m - np.array(c)
v = v/np.linalg.norm(v)
#plt.plot(m[0], m[1], 'o')
# optimization problem for computing position and radius for a maximal circle fitting in space between two big circles
# and being fully contained in enclosing circle
opti = casadi.Opti()
r = opti.variable(1) # radius of new circle
p = opti.variable(2) # center of new circle
lamb = opti.variable(1) # distance of center of new circle to center of enclosing circle
opti.minimize(-r)
opti.subject_to(p == c + v * lamb)
opti.subject_to((p[0] - p1[0])**2 + (p[1] - p1[1])**2 >= (rtilde + r)**2)
opti.subject_to(R == lamb + r)
opti.subject_to(r >= 0)
opti.subject_to(r <= R)
opti.solver('ipopt')
init_r = 0.1
init_lamb = R - init_r
init_p = c + v * init_lamb
opti.set_initial(r, init_r)
opti.set_initial(p, init_p)
opti.set_initial(lamb, init_lamb)
sol = opti.solve()
p = sol.value(p)
r = sol.value(r)
lamb = sol.value(lamb)
print("p = {}".format(p))
print("r = {}".format(r))
print("lambda = {}".format(lamb))
print("v = {}".format(v))
coords_2.append(p)
plt.plot(p[0], p[1], 'o')
circle = plt.Circle(p, r, fill=False)
plt.gca().add_artist(circle)
# postprocessing solution:
# - output radii for circles
# - output center coordinates, angle w.r.t. origin and distance from origin
outer_radius = 0.15 # desired plate radius in meters
tube1_radius = outer_radius * rtilde
tube2_radius = outer_radius * r
print("\n------------------")
print("plate radius = {:6.3} m = {:6.2f} mm".format(outer_radius, outer_radius * 1000))
print("big circles:")
print(" radius = {:6.3} m = {:6.2f} mm".format(tube1_radius, tube1_radius * 1000))
print(" diameter = {:6.3} m = {:6.2f} mm".format(2*tube1_radius, 2*tube1_radius * 1000))
print(" coordinates:")
for k in range(0,N):
x = coords[k][0] * 1000
y = coords[k][1] * 1000
t1, t2 = compute_tangent_points((0,0),(x,y), rtilde * 1000)
plt.plot(t1[0] / 1000, t1[1] / 1000, 'o')
plt.plot(t2[0] / 1000, t2[1] / 1000, 'o')
angle = arctan2(y,x) * 360.0 / (2.0 * math.pi)
dist = (x**2 + y**2)**0.5
angle_t1 = arctan2(t1[1], t1[0]) * 360.0 / (2.0 * math.pi)
dist_t1 = (t1[0] ** 2 + t1[1] ** 2) ** 0.5
angle_t2 = arctan2(t2[1], t2[0]) * 360.0 / (2.0 * math.pi)
dist_t2 = (t2[0] ** 2 + t2[1] ** 2) ** 0.5
print(" k = {}, (x,y) = ({:8.3f}, {:8.3f}), angle = {:8.3f} deg, dist = {:8.3f} mm".format(k, x, y, angle, dist))
print(" t1 = ({:8.3f}, {:8.3f}), angle = {:8.3f} deg, dist = {:8.3f} mm".format(t1[0], t1[1], angle_t1,
dist_t1))
print(" t2 = ({:8.3f}, {:8.3f}), angle = {:8.3f} deg, dist = {:8.3f} mm".format(t2[0], t2[1], angle_t2,
dist_t2))
print("\n")
print("small circles:")
print(" radius = {:6.3} m = {:6.2f} mm".format(tube2_radius, tube2_radius * 1000))
print(" diameter = {:6.3} m = {:6.2f} mm".format(2*tube2_radius, 2*tube2_radius * 1000))
print(" coordinates:")
for k in range(0,N):
x = coords_2[k][0] * 1000
y = coords_2[k][1] * 1000
t1, t2 = compute_tangent_points((0, 0), (x, y), r * 1000)
plt.plot(t1[0] / 1000, t1[1] / 1000, 'o')
plt.plot(t2[0] / 1000, t2[1] / 1000, 'o')
angle = arctan2(y, x) * 360.0 / (2.0 * math.pi)
dist = (x ** 2 + y ** 2) ** 0.5
angle_t1 = arctan2(t1[1], t1[0]) * 360.0 / (2.0 * math.pi)
dist_t1 = (t1[0] ** 2 + t1[1] ** 2) ** 0.5
angle_t2 = arctan2(t2[1], t2[0]) * 360.0 / (2.0 * math.pi)
dist_t2 = (t2[0] ** 2 + t2[1] ** 2) ** 0.5
print(" k = {}, (x,y) = ({:8.3f}, {:8.3f}), angle = {:8.3f} deg, dist = {:8.3f} mm".format(k, x, y, angle, dist))
print(" t1 = ({:8.3f}, {:8.3f}), angle = {:8.3f} deg, dist = {:8.3f} mm".format(t1[0], t1[1], angle_t1,
dist_t1))
print(" t2 = ({:8.3f}, {:8.3f}), angle = {:8.3f} deg, dist = {:8.3f} mm".format(t2[0], t2[1], angle_t2,
dist_t2))
pass