268 lines
11 KiB
Python
268 lines
11 KiB
Python
import numpy as np
|
|
import math
|
|
import time
|
|
|
|
|
|
class PIDController:
|
|
def __init__(self, estimator):
|
|
self.t = time.time()
|
|
|
|
self.estimator = estimator
|
|
self.controlling = False
|
|
|
|
self.P_angle = 0.4 # PID parameters determined by Ziegler-Nichols. measured K_crit = 1.4, T_crit = 1.5
|
|
self.I_angle = 0.35
|
|
self.D_angle = 0.1
|
|
|
|
self.P_pos = 0.50
|
|
self.I_pos = 0.3
|
|
self.D_pos = 0.1
|
|
|
|
self.mode = None
|
|
|
|
def move_to_pos(self, target_pos, robot, near_target_counter=5):
|
|
near_target = 0
|
|
while near_target < near_target_counter:
|
|
while not self.estimator.event_queue.empty():
|
|
event = self.estimator.event_queue.get()
|
|
print("event: ", event)
|
|
if event[0] == 'click':
|
|
pass
|
|
elif event[0] == 'key':
|
|
key = event[1]
|
|
|
|
if key == 84: # arrow up
|
|
self.controlling = True
|
|
self.t = time.time()
|
|
elif key == 82: # arrow down
|
|
self.controlling = False
|
|
robot.send_cmd()
|
|
elif key == 48: # 0
|
|
target_pos = np.array([0.0, 0.0, 0.0])
|
|
elif key == 43: # +
|
|
self.control_scaling += 0.1
|
|
self.control_scaling = min(self.control_scaling, 1.0)
|
|
print("control scaling = ", self.control_scaling)
|
|
elif key == 45: # -
|
|
self.control_scaling -= 0.1
|
|
self.control_scaling = max(self.control_scaling, 0.1)
|
|
print("control scaling = ", self.control_scaling)
|
|
elif key == 113:
|
|
print("quit!")
|
|
self.controlling = False
|
|
robot.send_cmd()
|
|
return
|
|
elif key == 27: # escape
|
|
print("quit!")
|
|
self.controlling = False
|
|
robot.send_cmd()
|
|
return
|
|
|
|
x_pred = self.get_measurement(robot.id)
|
|
|
|
if x_pred is not None:
|
|
error_pos = np.linalg.norm(x_pred[0:2] - target_pos[0:2])
|
|
angles_unwrapped = np.unwrap([x_pred[2], target_pos[2]]) # unwrap angle to avoid jump in data
|
|
error_ang = np.abs(angles_unwrapped[0] - angles_unwrapped[1])
|
|
# print("error pos = ", error_pos)
|
|
# print("error_pos = {}, error_ang = {}".format(error_pos, error_ang))
|
|
|
|
# if error_pos > 0.075 or error_ang > 0.35:
|
|
if error_pos > 0.05 or error_ang > 0.1:
|
|
# solve mpc open loop problem
|
|
res = self.ols.solve(x_pred, target_pos)
|
|
|
|
# us1 = res[0]
|
|
# us2 = res[1]
|
|
us1 = res[0] * self.control_scaling
|
|
us2 = res[1] * self.control_scaling
|
|
# print("u = {}", (us1, us2))
|
|
|
|
# print("---------------- mpc solution took {} seconds".format(tmpc_end - tmpc_start))
|
|
dt_mpc = time.time() - self.t
|
|
if dt_mpc < self.dt: # wait until next control can be applied
|
|
# print("sleeping for {} seconds...".format(self.dt - dt_mpc))
|
|
time.sleep(self.dt - dt_mpc)
|
|
else:
|
|
us1 = [0] * self.mstep
|
|
us2 = [0] * self.mstep
|
|
near_target += 1
|
|
|
|
# send controls to the robot
|
|
for i in range(0, self.mstep): # option to use multistep mpc if len(range) > 1
|
|
u1 = us1[i]
|
|
u2 = us2[i]
|
|
robot.send_cmd(u1, u2)
|
|
if i < self.mstep:
|
|
time.sleep(self.dt)
|
|
self.t = time.time() # save time the most recent control was applied
|
|
else:
|
|
print("robot not detected yet!")
|
|
|
|
def interactive_control(self, robots):
|
|
controlled_robot_number = 0
|
|
robot = robots[controlled_robot_number]
|
|
|
|
ts = []
|
|
angles = []
|
|
|
|
target_pos = np.array([0.0, 0.0, 0.0])
|
|
e_angle_old = 0.0
|
|
e_pos_old = 0.0
|
|
|
|
i = 0.0
|
|
i_angle = 0.0
|
|
i_pos = 0.0
|
|
|
|
t0 = time.time()
|
|
|
|
running = True
|
|
while running:
|
|
# handle events from opencv window
|
|
while not self.estimator.event_queue.empty():
|
|
event = self.estimator.event_queue.get()
|
|
print("event: ", event)
|
|
if event[0] == 'click':
|
|
target_pos = event[1]
|
|
i_angle = 0
|
|
i_pos = 0
|
|
e_pos_old = 0
|
|
e_angle_old = 0
|
|
self.mode = 'combined'
|
|
elif event[0] == 'key':
|
|
key = event[1]
|
|
|
|
if key == 32: # arrow up
|
|
self.controlling = not self.controlling
|
|
if not self.controlling:
|
|
print("disable control")
|
|
robot.send_cmd() # stop robot
|
|
self.mode = None # reset control mode
|
|
else:
|
|
print("enable control")
|
|
i = 0
|
|
self.t = time.time()
|
|
elif key == 48: # 0
|
|
target_pos = np.array([0.0, 0.0, 0.0]) # TODO: use center of board for target pos
|
|
elif key == 97: # a
|
|
self.mode = 'angle'
|
|
e_angle_old = 0
|
|
i = 0
|
|
self.t = time.time()
|
|
elif key == 99: # c
|
|
self.mode = 'combined'
|
|
e_angle_old = 0
|
|
e_pos_old = 0
|
|
i_angle = 0
|
|
i_pos = 0
|
|
self.t = time.time()
|
|
elif key == 112: # p
|
|
self.mode = 'position'
|
|
e_pos_old = 0
|
|
i = 0
|
|
self.t = time.time()
|
|
elif key == 43: # +
|
|
self.P_pos += 0.1
|
|
print("P = ", self.P_angle)
|
|
elif key == 45: # -
|
|
self.P_pos -= 0.1
|
|
print("P = ", self.P_angle)
|
|
elif key == 9: # TAB
|
|
# switch controlled robot
|
|
robot.send_cmd() # stop current robot
|
|
controlled_robot_number = (controlled_robot_number + 1) % len(robots)
|
|
robot = robots[controlled_robot_number]
|
|
print(f"controlled robot: {robot.id}")
|
|
elif key == 113 or key == 27: # q or ESCAPE
|
|
print("quit!")
|
|
self.controlling = False
|
|
robot.send_cmd()
|
|
return
|
|
|
|
if self.controlling:
|
|
# measure state
|
|
x_pred = self.get_measurement(robot.id)
|
|
dt = self.t - time.time()
|
|
|
|
|
|
|
|
#print(f"x_pred = {x_pred}\ntarget = {target_pos}\nerror = {np.linalg.norm(target_pos - x_pred)}\n")
|
|
if self.mode == 'angle':
|
|
# compute angle such that robot faces to target point
|
|
target_angle = target_pos[2]
|
|
|
|
ts.append(time.time() - t0)
|
|
angles.append(x_pred[2])
|
|
|
|
angles_unwrapped = np.unwrap([x_pred[2], target_angle]) # unwrap angle to avoid jump in data
|
|
|
|
e_angle = angles_unwrapped[0] - angles_unwrapped[1] # angle difference
|
|
p = self.P_angle * e_angle
|
|
# i += self.I * dt * e # right Riemann sum
|
|
i += self.I_angle * dt * (e_angle + e_angle_old)/2.0 # trapezoidal rule
|
|
d = self.D_angle * (e_angle - e_angle_old)/dt
|
|
|
|
u1 = p - i - d
|
|
u2 = - u1
|
|
|
|
e_angle_old = e_angle
|
|
|
|
elif self.mode == 'combined':
|
|
# compute angle such that robot faces to target point
|
|
v = target_pos[0:2] - x_pred[0:2]
|
|
target_angle = math.atan2(v[1], v[0])
|
|
|
|
angles_unwrapped = np.unwrap([x_pred[2], target_angle]) # unwrap angle to avoid jump in data
|
|
|
|
e_angle = angles_unwrapped[0] - angles_unwrapped[1] # angle difference
|
|
e_pos = np.linalg.norm(v)
|
|
|
|
if e_pos < 0.05:
|
|
self.mode = 'angle'
|
|
e_angle_old = 0
|
|
e_pos_old = 0
|
|
i_angle = 0
|
|
i_pos = 0
|
|
u1 = 0
|
|
u2 = 0
|
|
else:
|
|
forward = abs(e_angle) < np.pi/2.0
|
|
|
|
if not forward:
|
|
if e_angle > np.pi/2.0:
|
|
e_angle -= np.pi
|
|
else:
|
|
e_angle += np.pi
|
|
|
|
p_angle = self.P_angle * e_angle
|
|
i_angle += self.I_angle * dt * (e_angle + e_angle_old) / 2.0 # trapezoidal rule
|
|
d_angle = self.D_angle * (e_angle - e_angle_old) / dt
|
|
|
|
p_pos = self.P_pos * e_pos
|
|
i_pos += self.I_pos * dt * (e_pos + e_pos_old) / 2.0 # trapezoidal rule
|
|
d_pos = self.D_pos * (e_pos - e_pos_old) / dt
|
|
|
|
if forward:
|
|
print("forward")
|
|
u1 = p_angle + p_pos - i_angle - i_pos - d_angle - d_pos
|
|
u2 = - p_angle + p_pos + i_angle - i_pos + d_angle - d_pos
|
|
else:
|
|
print("backward")
|
|
u1 = p_angle - p_pos - i_angle + i_pos - d_angle + d_pos
|
|
u2 = - p_angle - p_pos + i_angle + i_pos + d_angle + d_pos
|
|
|
|
e_pos_old = e_pos
|
|
e_angle_old = e_angle
|
|
|
|
else:
|
|
u1 = 0.0
|
|
u2 = 0.0
|
|
#print(f"u = ({u1}, {u2})")
|
|
robot.send_cmd(u1, u2)
|
|
self.t = time.time() # save time when the most recent control was applied
|
|
time.sleep(0.1)
|
|
|
|
|
|
def get_measurement(self, robot_id):
|
|
return self.estimator.get_robot_state_estimate(robot_id)
|