started implementing game element logic

This commit is contained in:
Simon Pirkelmann 2020-09-20 22:40:51 +02:00
parent ca11f3476c
commit a334fab2c6

View File

@ -93,13 +93,19 @@ class Robot:
self.board[(x,y)].occupant = self self.board[(x,y)].occupant = self
def get_accessed_tiles(self, count): def get_accessed_tiles(self, count, forward=True):
# create a list of all tiles the robot would enter if it drives <count> steps forward # create a list of all tiles the robot would enter if it drives <count> steps forward
tiles = [] tiles = []
current_tile = self.board[(self.x, self.y)] current_tile = self.board[(self.x, self.y)]
for i in range(1, count + 1): for i in range(1, count + 1):
current_tile = self.board.get(current_tile.get_neighbor_coordinates(self.orientation)) if forward:
tiles.append(current_tile) current_tile = self.board.get(current_tile.get_neighbor_coordinates(self.orientation))
else:
current_tile = self.board.get(current_tile.get_neighbor_coordinates(Robot.opposites[self.orientation]))
if current_tile is None:
return tiles
else:
tiles.append(current_tile)
return tiles return tiles
def is_pushable(self, direction): def is_pushable(self, direction):
@ -154,7 +160,7 @@ class Robot:
return "{}, forward".format(self.id) return "{}, forward".format(self.id)
elif type == 'backward': elif type == 'backward':
opposite_orientation = self.get_opposite_orientation() opposite_orientation = self.get_opposite_orientation()
target_tile = tile.get_neighbor_coordinates(opposite_orientation) target_tile = self.board[tile.get_neighbor_coordinates(opposite_orientation)]
if target_tile.occupant is not None: if target_tile.occupant is not None:
print("error: target tile is not empty") print("error: target tile is not empty")
@ -235,32 +241,46 @@ class Board:
if (x == 0) or (x == Board.x_dims + 1) or (y == 0) or (y == Board.y_dims + 1): if (x == 0) or (x == Board.x_dims + 1) or (y == 0) or (y == Board.y_dims + 1):
# place walls around the board # place walls around the board
self.board[(x, y)] = Tile(x, y, '#') self.board[(x, y)] = Tile(x, y, '#')
elif x == 1 and (y >= 1) and (y <= 4): elif x == 1 and (y >= 1) and (y < 4):
self.board[(x, y)] = Tile(x, y, 'v') self.board[(x, y)] = Tile(x, y, 'v')
elif y == 4:
self.board[(x, y)] = Tile(x, y, '>')
else: else:
self.board[(x,y)] = Tile(x,y) self.board[(x,y)] = Tile(x,y)
self.robots = {} self.robots = {}
self.robots[0] = Robot(3, 1, '<', 0, self.board) self.robots[0] = Robot(3, 1, '>', 0, self.board)
self.robots[1] = Robot(2, 1, 'v', 1, self.board) self.robots[1] = Robot(2, 1, 'v', 1, self.board)
def handle_push(self, pushing_robot, pushed_robot): def handle_push(self, direction, pushed_robot, forward=True, pushing_robot=None):
cmd_list = [] cmd_list = []
# push robot out of the way # push robot out of the way
if pushed_robot.orientation == pushing_robot.orientation: if pushed_robot.orientation == direction:
# the pushed robot can just drive forward if forward:
cmd_list += self.handle_single_action('forward', pushed_robot) # the pushed robot can just drive forward
elif pushed_robot.has_opposite_orientation(pushing_robot.orientation): cmd_list += self.handle_single_action('forward', pushed_robot)
# the pushed robot can drive backward else:
cmd_list += self.handle_single_action('backward', pushed_robot) # the pushed robot can just drive backward
cmd_list += self.handle_single_action('backward', pushed_robot)
elif pushed_robot.has_opposite_orientation(direction):
if forward:
# the pushed robot can drive backward
cmd_list += self.handle_single_action('backward', pushed_robot)
else:
# the pushed robot drives forward
cmd_list += self.handle_single_action('forward', pushed_robot)
else: else:
# we first have to turn the pushed robot s.t. it faces in the same orientation as the # we first have to turn the pushed robot s.t. it faces in the same orientation as the
# pushing robot # pushing robot
turn_direction = pushed_robot.get_turn_direction(pushing_robot.orientation) turn_direction = pushed_robot.get_turn_direction(direction)
cmd_list += self.handle_single_action(turn_direction, pushed_robot) cmd_list += self.handle_single_action(turn_direction, pushed_robot)
# then the pushed robot drives one step forward if forward:
cmd_list += self.handle_single_action('forward', pushed_robot) # then the pushed robot drives one step forward
cmd_list += self.handle_single_action('forward', pushed_robot)
else:
# if its pushed backward it instead drives on step backward
cmd_list += self.handle_single_action('backward', pushed_robot)
# afterwards we turn the robot back to the original orientation # afterwards we turn the robot back to the original orientation
if turn_direction == 'turn left': if turn_direction == 'turn left':
@ -272,8 +292,12 @@ class Board:
sys.exit(1) sys.exit(1)
cmd_list += self.handle_single_action(turn_back_direction, pushed_robot) cmd_list += self.handle_single_action(turn_back_direction, pushed_robot)
# now the tile should be empty so the pushing robot can move into the tile if pushing_robot is not None:
cmd_list.append(pushing_robot.move('forward')) # now the tile should be empty so the pushing robot can move into the tile
if forward:
cmd_list.append(pushing_robot.move('forward'))
else:
cmd_list.append(pushing_robot.move('backward'))
return cmd_list return cmd_list
def handle_single_action(self, action, robot): def handle_single_action(self, action, robot):
@ -302,7 +326,7 @@ class Board:
self.robots.values()]): # robots hits a tile occupied by another robot self.robots.values()]): # robots hits a tile occupied by another robot
pushed_robot = next(filter(lambda r: (tile.x, tile.y) == (r.x, r.y), self.robots.values())) pushed_robot = next(filter(lambda r: (tile.x, tile.y) == (r.x, r.y), self.robots.values()))
if pushed_robot.is_pushable(robot.orientation): # check if robot is pushable in the given direction if pushed_robot.is_pushable(robot.orientation): # check if robot is pushable in the given direction
cmd_list += self.handle_push(pushing_robot=robot, pushed_robot=pushed_robot) cmd_list += self.handle_push(direction=robot.orientation, pushed_robot=pushed_robot, forward=True, pushing_robot=robot)
else: else:
cmd_list.append(robot.nop()) cmd_list.append(robot.nop())
return cmd_list return cmd_list
@ -312,12 +336,47 @@ class Board:
sys.exit(1) sys.exit(1)
elif action == 'backward': elif action == 'backward':
# basically do the same as with forward # basically do the same as with forward
pass accessed_tiles = robot.get_accessed_tiles(1, forward=False)
for tile in accessed_tiles:
if tile is None:
# this case should not happen
print("error: unknown state occured")
sys.exit(1)
elif tile.is_empty():
# if the tile is empty we can just move there
cmd_list.append(robot.move('backward'))
elif tile.modifier == '#': # robot hits a wall -> stop the robot
cmd_list.append(robot.nop())
return cmd_list
elif any([(tile.x, tile.y) == (r.x, r.y) for r in
self.robots.values()]): # robots hits a tile occupied by another robot
pushed_robot = next(filter(lambda r: (tile.x, tile.y) == (r.x, r.y), self.robots.values()))
if pushed_robot.is_pushable(Robot.opposites[robot.orientation]): # check if robot is pushable in the given direction
cmd_list += self.handle_push(direction=robot.orientation, pushed_robot=pushed_robot, forward=False, pushing_robot=robot)
else:
cmd_list.append(robot.nop())
return cmd_list
else:
# this case should not happen
print("error: unknown state occured")
sys.exit(1)
else: # this means we have a turn action else: # this means we have a turn action
cmd_list.append(robot.turn(action)) cmd_list.append(robot.turn(action))
return cmd_list return cmd_list
def handle_board_element(self, robot):
cmd_list = []
tile = self.board[(robot.x, robot.y)]
if tile.modifier in ['^', '>', 'v', '<']:
# board element pushes the robot to next tile
if robot.is_pushable(tile.modifier):
cmd_list += self.handle_push(direction=tile.modifier, pushed_robot=robot, forward=True)
else:
cmd_list.append(robot.nop())
return cmd_list
def apply_actions(self, cards): def apply_actions(self, cards):
cmd_list = [] cmd_list = []
# apply the actions to the board and generate a list of movement commands # apply the actions to the board and generate a list of movement commands
@ -335,10 +394,14 @@ class Board:
print("robot {} action {}".format(robot, action)) print("robot {} action {}".format(robot, action))
cmd_list += self.handle_single_action(action, robot) cmd_list += self.handle_single_action(action, robot)
print(cmd_list)
pass
# apply the actions caused by board elements at the end of the phase # apply the actions caused by board elements at the end of the phase
for robot_id in self.robots:
robot = self.robots[robot_id]
cmd_list += self.handle_board_element(robot)
print(cmd_list)
print(self)
pass pass
def __str__(self): def __str__(self):
@ -357,8 +420,10 @@ class Board:
if __name__ == "__main__": if __name__ == "__main__":
n = 5 n = 5
player_1_cards = random.sample(list(filter(lambda c: 'forward' in c.action, deck.deck.values())), n) player_1_cards = random.sample(list(filter(lambda c: 'backward' in c.action, deck.deck.values())), n)
player_2_cards = random.sample(list(filter(lambda c: 'turn around' in c.action, deck.deck.values())), n) player_2_cards = random.sample(list(filter(lambda c: 'turn around' in c.action, deck.deck.values())), n)
#player_1_cards = deck.draw_cards(40)
#player_2_cards = deck.draw_cards(40)
cards_1 = [(0, c) for c in player_1_cards] cards_1 = [(0, c) for c in player_1_cards]
cards_2 = [(1, c) for c in player_2_cards] cards_2 = [(1, c) for c in player_2_cards]