Breadboard logic

January 13th, 2020

Outline

Boolean logic

What can we do with logic gates

Latches and Flip-Flops

Basic logic operation

- Two states **TRUE** and **FALSE** (also written as **1** and **0**)
- Boolean logic describes logical operations

 In electronics boolean states are represented by different voltage levels, e.g. FALSE = 0 V, TRUE = 5 V

Breadboard

Breadboard

Building some gates with other gates

Binary addition

Adding two bits can be implemented with one AND gate and one XOR gate

Full Adder

Building a N-bit adder

Ripple carry adder

Memory

S-R-Latch

Gated latch

D latch

Building a N-bit shift register