Compare commits
No commits in common. "447bcafe9debdeb96610406f1262f2fb903e666a" and "c438aa742cadd48cbfd22779c9db68358137df06" have entirely different histories.
447bcafe9d
...
c438aa742c
|
@ -1 +0,0 @@
|
|||
17
|
|
@ -1 +0,0 @@
|
|||
Welcome to our Code-Break-Party! I hope you will have a good time and learn a thing or two about cryptography.
|
|
@ -1 +0,0 @@
|
|||
25
|
|
@ -1 +0,0 @@
|
|||
Here are some simple Caesar ciphers to get startet. These should be easily solveable by brute force.
|
|
@ -1 +0,0 @@
|
|||
13
|
|
@ -1 +0,0 @@
|
|||
This is an example for the ROT thirteen encryption. A special case of caesar, where the double application of the encryption yields back the plain text.
|
|
@ -1 +0,0 @@
|
|||
8
|
|
@ -1 +0,0 @@
|
|||
Natuerlich sind nicht alle Texte in englisch. Bei Caesar spielt das noch keine Rolle, aber bei anderen Verschluesselungsverfahren ist of Vorwissen ueber den Text zur Entschluesselung noetig.
|
|
@ -1 +0,0 @@
|
|||
6
|
|
@ -1 +0,0 @@
|
|||
INMANCHENTEXTENHATMANAUCHKEINESATZZEICHENDIEDABEIHELFENDENTEXTZUENTSCHLUESSELN
|
|
@ -1 +0,0 @@
|
|||
15
|
|
@ -1 +0,0 @@
|
|||
Gegen Nennung dieses Kennworts gibt es als Preis Mate oder Suessigkeiten: BRUTUS
|
|
@ -1 +0,0 @@
|
|||
Tg stgsf Djia tf Ejnsg, nm dseqs stg Ajeetq. Gtiaq tg stgsf csriaqsg, piafrqythsg Djia, vj sp gmia Fjnso otsiaq rgn Vrofytkcsd ujg nsg Vmsgnsg asomeamsghsg, rgn mria gtiaq tg stgso qojibsgsg, bmadsg Pmgnhores jags Qtpias rgn Pqrsads, vj fmg ptia yrf Sppsg atgpsqysg bjsggqs: gstg, nmp Djia vmo stgs Ajeetqajsads, rgn nmp astppq, sp vmo psao bjfcjoqmesd.
|
|
@ -1,27 +0,0 @@
|
|||
import matplotlib.pyplot as plt
|
||||
|
||||
f = open('ciphertext.txt')
|
||||
|
||||
ciphertext = f.readline().upper()
|
||||
|
||||
letter_count = {}
|
||||
|
||||
letters = [chr(i) for i in range(ord('A'), ord('Z')+1)]
|
||||
|
||||
for c in letters:
|
||||
letter_count[c] = 0
|
||||
|
||||
for c in ciphertext:
|
||||
if c in letter_count.keys():
|
||||
letter_count[c] += 1
|
||||
|
||||
print(letter_count)
|
||||
|
||||
x = range(0,26)
|
||||
y = [letter_count[chr(ord('A')+i)] for i in range(0,26)]
|
||||
|
||||
plt.bar(x, y)
|
||||
plt.xticks(x, letters) # Set locations and labels
|
||||
|
||||
|
||||
plt.show()
|
|
@ -1,25 +0,0 @@
|
|||
import numpy as np
|
||||
transposes = ['GADSJFEDVAWFYJSGLSGFVELTSWZGKNYGWGKWFZWZJFJZFDLFJKFLLJLESJUVFHMJWKJNWAVSKSHWSWHGWEZWGATVDJLMWWWWODAUUJFTSDFFLSWAAEUFKJQSKJFGYWAAVFVLSSVLJWTVSWJLJFFFZJWLQSAGQFAZEDFSZGDFVSKEJXDLFOZGVKHNGETLLKGKWHJLZLJEXGWDHWAGLJGGOKSLHMSXWAVWGZWEWAAJVSJGWYXUAKXYZVXJGYFDGXMKFASFAAHGDAHYJJZWXWWGWXJZWLHVLDIFJWJWLGALFEWWMAFKZLAWLAZGVHXQSKGZJLLDVWFWAYWFZFVWYFSDDDXMWWAWQQLXZGFYFAVBSALVJDAJGELLGDW', 'BUSYARSCSBFUSOAAHHFCWSVSFFCCVOVAOFHFHSBSSGIDHZOSSHUCWSFPHSSCRFZVBOISPKGACAWFFOSCFCOFRBHFSSVBGBCGVSGVYSROAZAOOHTRGMSKOMVAASRDHBFBOCOVBACKRRSIZADOSMUHSBQKQBGQUHBHSMWBSFZZWWOSSCDBPOGJCHHSCSIHVDBGKCHSSSQIFKASSTFFVCOIVWBTDBGORGSRDCCCBBBOOHRCJWHMBCMFOCMCFOUSHWFCRBRWCBZSJBZCSSHBFBFCRZWZGVWBVSISUBODVDFVHDSGBGQVOFGPSASFWFPHHPHWFVOQAOCORSEBOCCYUHBISIHZOGHAPVVASFBGUBPIAGVSSOACBMVZBZF', 'CHIAACORDGEANPBEEMOTSMERAWSREITMSRLAMAORAASUHESVSIOOSNAEEAAONEGENILNUAOEFENDCRNRERTITGIEVAEBTONPINPOTMNCBMEGPLOISWLHNEEOYTNEHWTTSFYECIRIOARPLYENTBMOGDOORDARRRGLWNGSREEYSNNALRAOESEEOUUHRATIEOEOOUHRRRETINOASODEEKPBATDRYMTSFSNIELFRSGTICIAREBOUKMOISMOAEGBEHENMMIANNGIREGIESTTSOSATOOEEESTEYNAPEOVRIHDEOEHODDHOUUTALPRETOIHBYHSOIILANRNELUETFREEODTAMHHVSTYEEYYREETSGUSBEEMAMSWTSAITBM', 'YNJHHOZYHMWMNJYPLSHBNVVUNLNYXHNSYIYLUHLYHXNLLXNYIFZXMNHLPNNLIMLMIXSYNMALUNAIYXYXUYXHBZHUYGMLCNFIMIYGBYIEYSVUJILMICYUXRUGMCIHYCUBNNMFYHMNLVXIUWLXBCSMLYOLYMCUCUZSBUBBUGXZWFMHYQAFCVYBLJLCQMNHJEQOLLYYNYFNYVLPBLMMMYNNNMMIGYYNUIVLNSHYNUIAOHHNFYFHCCLGNCLENYORYLYMIHNAMNAVNQALMBBYGYJZHIXHUYYJGIZYNLYIHYILLMYFUYUGHFBFFFUJBJLUYNUMQHXUCAYXHMIPQJZXNNNIPYUUYOBXUUZXUUPCNIMNYSMIGJNMBINYBYI', 'MVGVQJXOWMSGDAJAWUDAAWDFWGMSLDGTGOFWAYWXVMDHAEAJLDEJGJUVAAELLWWADAQKLFWSASSGOQVSFVSYWWYEJTAGDGQCHJJMWJLAJKMAAMWMEFLLLHJWLKLZKLFWSZGWEMLZDGGFKZUFWJKESUFWKZVNENJKSELGNMLGGQOANWJAFDAATGWKAFZYDWGDVFJVZVQWFWJWSWSLLFDDAGLESJJSKFGYZTWTADKZKXVZNLALFFWMDFWAZVLHXQVUJYWGNZZMNAZKSWWJSJZSLJLLFFJWWJXFLWFHYLJLOLJSMKFWLQWEEGNJAZVLFZVGDLWKVWUJOFLWGSAMLZZFWSLLEFWGCJGGNFWDAFLSJWWFADJZWMKKWDJ', 'CEAJNVBUNQZSLAQFQULAAERQQHCTULOBSSBNQRABGAVYYRPSUGLRZRRBFALUUAJGBBBFUNACACGENBJEQREYENQFQRYXYXJRRRREJRUAGBEAAQFERQZGUYGARGURUUQEGRSNNGNZNIBNWNUBAQNVIBGGGNNRNRBUGRFERPUJHGRANPRITRAFVAQPGRRYNBEVUBGARGZEQSBZIGVNVOLRGABFFPSAGTERNHIHYYZGUEORRBABTBJALBZAVVAEBRVBRJNARNGGVGGUUANCAFVYUJUGTGRAZRGGUDAUBFQRUGRGARGORVEVRERBARBUQNBHNUACRYYNUNUEEERCURRVAFYULOOBSGEBRQEYYGBOQFRFAVRVSYUSSVR', 'OEDEQORIRDESRGOITATGCIAEYGOEEIOOSORNELARHCNELWTEAHHPEAAOIGCIITSANRUIEPTPTPMTSUIKNEKOERRNAFEENEONRTDMOLITUUNIGEUETOEHIOBTRHIRUMFEESYSDEYIDERBUMETTBDLEREHBVRNNNMOTIPENHILRHRGNAEIESGCRTBHHVROCNDNETHONIOESOWEEHDRLYSSULROTIODESESTRETLMIIIOUNTOKFWUHGGUEGSNOEWYNRIISTLTGWOHGENMIEUWMLERYHETSTOQHHIUEEFTEMEOAETREYDIENTENPGTRESTRLDENANSADOMTMDTNSETNAOAISLRURRAMRNTFILHFOOHMTGGASLFALLF', 'JWAWQQCHHAWKWWKPWIDIPPGWEDJNIDNGKNAZJOIAAACYAEAHPAAARPPNPADOJHPPCINEBLHEHEUDODZJKLJJSEAKNKJJAJNSADWQNUJKNHEDONNHDSOAONAWUAJAPWHOHWKPAOAAUILQOXZDDABEWQJKAAPCZSPNDOHMJEOPOKHHYJEJROXDZDQWOAWJEHWPZDAPDHNZDNDWBAJPHNLOPUAIABHBNKPKIZNPXUHSKJOQOGEWDOWWWOWJECOOHAPAOPADRPHDHPHOAANNJQSOPACAHDLDNQEAOKRPAERLPOOUAPZDPIECAMJDKOZWWCASAZEOSJOEIADKKEZPAAEJXPALKKOPKJBMJDHOEALRKWEDWDIOKNZKKP', 'JAAAJBXNHWCVYCAXYKRXUFMLWCCUXJABACOAFWNEBAXDMCACWKJJRRVBXWJRPHARNJOVJRHWHWLJDNNNCRNPXWJVNALJBJMJMRWAMCPCWFWNXCNHRUNAVNBWNFPRCWDCHRAXQCMWYHNBCNJRRPJWWVJDBWBQJJQNHXDDNVDXNDRRHWWPNNRJXNBVDAENMHBQRRWJNUNXJNNBUWNUWNXBCBLNADUXCWRONNWQNORQWCCYRVWWJKCRDKWNBDHBFBXCJQANNQXXNQXQECPOBWQCDCXNBNRNRJBJUCNBEURCQBQNMUXXNYBRUDNNOCNEKXCRWRCJQJYJCUNADWRJKVPBUXCXWTCJVMADNNRBBYJNAEWJWCRQXXXJXN', 'VHNHRECRWUJNYVCAYNBAHJNQPRQHAMXBAQXJQJUNRCOAVQAKXNACBWHXACVCVVXWAMXYLWHPHPQCAACBQWBRWPVXMNNWBWCBFBMNUQVQRRPJVQUCWJNNHUCMGRVONHCNAWNKNXQXNLACJAWWBDWPMXWPQCDJWWNCUWCXEJWQBPCCKXPQAMAVABCKLVNUKCRJMWQOORCCEXFVXCENNYTJNCJDFUXURNUQUWNNPJWNNXJXWHPLCRCWWRCEJNURQWVQCVNLCNJBCNJJNQADNPXROLMKQNCONOTWXQAJRUUNNNXCXJWAUUCUUXECNRENXMNCRBBRXVJWQNANAPBAJYQQJTQTNNJTXCXXEACRBJUVJNPCMXWJAVFCAM', 'IWDONOTNAYPOIYIIIRAEISCSETEIRSWUOERDOMERLAETEFOEWATIIGCMERBIOYNGSARLTGOAOTAIEEHSITSSDDIRTBWDGDHTOIADEIOENTSREAYHGTTASEITPNOLRATPATNENPEFRHCOBDDGEICBSFCHOHRSCDNEOTOTERGEOHTTOTTUYWDBBCAEHONYUHFTOGEELSHHENIYWHEDSLEIROUNHDWLLBLIABVRUNGEDFNNKSFYTRHLTRIETSLNOOYIDYCULLTELLTLROEMEBSNTHHYERERSFIDSTMILIWRRDRANNTRLOHEMTESVLINVWLHFTHNMERTENABSBHTCETOCEYELNBEUAMTEATTILLYNAOITEGDAOTISN', 'JNCBZRKUVZVTTIYSTJTGXOKKSYLCUULXCRZOSKYSQOGGLGXLZZOTZKNKTGKYXYMZOSMUOGATAGSYOOKZTUVZKUTZUAGZGZKNXCTHTYXIMNUJCTYGGZNZZZRNRJXACLKVBRUOUVHRIGNLUUYSHREEZZKZXUKZOKORXNTNXBGGVORRXNNSKOGKKAHXTXYUYGNUALAGAIGKLZRNTKXGYETJYIMNUOKURAZYTUKGOIYRYHJZOKGZNJOEGJTXKYGMYCHYONRYOGKBOGORSACKTEKQKOGZNKGUUUTLZNUJVLNYZZKRZJNUSXKGKNXGORRZKKRYCGGZZRGSGUBKOOXOQYYXQTYTOWUZZQUNXBOZZRGIJRLYNXZUTANTNK', 'BWSSOIBRDVWSUVGIUCRVSBADPUZWKIFQGCVOHZGCSBQWWBGCCWGUCBOZHBFOSCSVFHWFGBQRQDPQVCRVUHSCFIUORHGVJVFSRVSOCOSVOWCOVPOHHWSWSAZWCOSBVZFSSMHGHSICVASDJCOCCWWHSVWVBIBZSFUZRSWHASWFZHSSSSOOHHPFOZCROSWBHHWBHOHHHOBFZVZCPPAHPGRWWYVOAGRKVFVVQFFJZMHSSWRVBZBVWCGUBCQABWPHSPCOJSWVBARSBABDCURRQGTZRQHVOGBATVRCZSFWFPSSSVRZVSWFSSFRWHAWZWPVIPHCWBZSVSFOBFSHUFWBWHDSDCCZBIJVASTHASBWHWGVVZORSVVKRHOUOJ']
|
||||
|
||||
def compute_frequencies(block):
|
||||
letter_count = {}
|
||||
letters = [chr(i) for i in range(ord('A'), ord('Z')+1)]
|
||||
for l in letters:
|
||||
letter_count[l] = block.count(l)
|
||||
return letter_count
|
||||
|
||||
def coincidence(block):
|
||||
compute_frequencies(block)
|
||||
freq = compute_frequencies(block)
|
||||
sum = 0
|
||||
for f in freq:
|
||||
sum += freq[f] * (freq[f]-1)
|
||||
kappa = float(sum)/(len(block) * (len(block)-1))
|
||||
return kappa
|
||||
for t in transposes:
|
||||
print("kappa", coincidence(t))
|
||||
|
||||
for t in transposes:
|
||||
d = compute_frequencies(t)
|
||||
|
||||
print(chr((ord('E') - ord(d.keys()[np.argmax(d.values())]))%26+65))
|
|
@ -1,83 +0,0 @@
|
|||
f = open('frost_cipher.txt')
|
||||
cipher = f.readlines()
|
||||
cipher = [c.strip('\n').split(' ') for c in cipher]
|
||||
|
||||
clean = ''
|
||||
for c in cipher:
|
||||
clean += "".join(c)
|
||||
# print("".join(c))
|
||||
ciphertext = clean.upper()
|
||||
|
||||
|
||||
colors = ['red', 'blue', 'darkgreen', 'orange', 'black', 'yellow']
|
||||
|
||||
width = 110
|
||||
blocknum = 4
|
||||
blocks = ["" for i in range(0,blocknum)]
|
||||
output0 = "\\texttt{"
|
||||
output1 = "\\texttt{"
|
||||
|
||||
for i in range(len(ciphertext)):
|
||||
output0 += ciphertext[i]
|
||||
|
||||
for j in range(blocknum):
|
||||
if i % blocknum == j:
|
||||
output1 += "\\textcolor{" + colors[j] + "}{" + ciphertext[i] + "}"
|
||||
|
||||
blocks[i%blocknum] += ciphertext[i]
|
||||
|
||||
if (i+1)%width == 0:
|
||||
output0 += '\n'
|
||||
output1 += '\n'
|
||||
|
||||
output0 += "}"
|
||||
output1 += "}"
|
||||
|
||||
f0 = open('friedman_0.tex', 'w')
|
||||
f0.write(output0)
|
||||
f0.close()
|
||||
|
||||
f1 = open('friedman_{}.tex'.format(blocknum), 'w')
|
||||
f1.write(output1)
|
||||
f1.close()
|
||||
|
||||
def compute_coincidence(text):
|
||||
letter_count = {}
|
||||
letters = [chr(i) for i in range(ord('A'), ord('Z')+1)]
|
||||
|
||||
for c in letters:
|
||||
letter_count[c] = 0
|
||||
|
||||
for c in text:
|
||||
if c in letter_count.keys():
|
||||
letter_count[c] += 1
|
||||
|
||||
N = len(text)
|
||||
s = 0
|
||||
for n_i in letter_count.values():
|
||||
s += n_i * (n_i - 1)
|
||||
kappa = float(s) / (N * (N - 1))
|
||||
print("kappa_o = ", kappa)
|
||||
return kappa
|
||||
|
||||
|
||||
def output_block(block, color, width=20):
|
||||
output = "\\texttt{\\textcolor{" + color + "}{"
|
||||
for i in range(len(block)):
|
||||
output += block[i]
|
||||
if (i+1)%width == 0:
|
||||
output += '\n'
|
||||
|
||||
output += "}}"
|
||||
|
||||
kappa = compute_coincidence(blocks[j])
|
||||
output += "\\textcolor{"+color+"}{$$" + "\\kappa_o = {:6.4f}".format(kappa) + "$$}"
|
||||
print(output)
|
||||
|
||||
f = open('friedman_{}_'.format(blocknum) + color + '.tex', 'w')
|
||||
f.write(output)
|
||||
f.close()
|
||||
|
||||
for j in range(blocknum):
|
||||
output_block(blocks[j], colors[j])
|
||||
|
|
@ -1,19 +0,0 @@
|
|||
Ync jhfug vbavfyxi zb s rjczgp bfcv
|
||||
Tsu ggkwp W uhzcr fhy kfsojc pgmm
|
||||
Rbv uj fbw mwrjweji zggl Z glhtu
|
||||
Ofw qfccxi ucog tes sl krf sl N tcmei
|
||||
Kc oajis am gvbl bs kvw nsusjzwfkla
|
||||
Yysf mtfy laj fhzxw rg bnxk ok yfzf
|
||||
Sgi yonbsx dwkmrdk mmv pwmyvf uefza
|
||||
Txhrikx nk ksl liokld rbv pfehww bvoj
|
||||
Mmfiya fj tgk yyol mmv dslxzby mmvfw
|
||||
Sgi scla yyol ftibagl vemtqcm dtd
|
||||
Zb dxfmsk gt jhwi mrr lkturwg gcoud
|
||||
Ty W cxuk hzx kzfkm kff sgtkvwk irm
|
||||
Qxy bbgpneu zhb noq ejrrk hs kc otd
|
||||
Z rgngksv bk Z gzhzcr woji qgfj soud
|
||||
N jvseq ss lxqcwfz yywk pnkv s lnxv
|
||||
Khrvkzxwv oyxx rbv tlvg zxsts
|
||||
Lpt icswx uwnxwxsv bs r kghi rbv B
|
||||
N kcgd yys ggj cskl yionxqvr tr
|
||||
Fer lafk vsl rrrw tqc hzx iztxxwvbux
|
|
@ -1,14 +0,0 @@
|
|||
ciphertext = "PPKAMJELQHPIAHLWYPKDDNBGPMJELQHPIAHZWUYJH"
|
||||
|
||||
blocks = ["", "", ""]
|
||||
output = ""
|
||||
for i in range(len(ciphertext)):
|
||||
if i % 3 == 0:
|
||||
output += "\\textcolor{red}{" + ciphertext[i] + "}"
|
||||
elif i % 3 == 1:
|
||||
output += "\\textcolor{blue}{" + ciphertext[i] + "}"
|
||||
elif i % 3 == 2:
|
||||
output += "\\textcolor{darkgreen}{" + ciphertext[i] + "}"
|
||||
blocks[i%3] += ciphertext[i]
|
||||
print(output)
|
||||
print(blocks)
|
|
@ -1,16 +0,0 @@
|
|||
from enigma.machine import EnigmaMachine
|
||||
|
||||
# setup machine according to specs from a daily key sheet:
|
||||
|
||||
rotors = 'II V I'
|
||||
|
||||
machine = EnigmaMachine.from_key_sheet(
|
||||
rotors=rotors,
|
||||
reflector='B',
|
||||
ring_settings=[12, 3, 5],
|
||||
plugboard_settings='')
|
||||
|
||||
cipher = machine.process_text('WIEXSCHOENXDOCHXDASXWETTERXHEUTEXISTXDENXGANZENXTAGXREGENXDERXVOUCHERXISTXALANTURING')
|
||||
|
||||
print(cipher)
|
||||
|
|
@ -1,6 +0,0 @@
|
|||
\hspace{-1cm}\texttt{\textcolor{red}{Y}\textcolor{blue}{N}\textcolor{darkgreen}{C}\textcolor{orange}{J}\textcolor{red}{H}\textcolor{blue}{F}\textcolor{darkgreen}{U}\textcolor{orange}{G}\textcolor{red}{V}\textcolor{blue}{B}\textcolor{darkgreen}{A}\textcolor{orange}{V}\textcolor{red}{F}\textcolor{blue}{Y}\textcolor{darkgreen}{X}\textcolor{orange}{I}\textcolor{red}{Z}\textcolor{blue}{B}\textcolor{darkgreen}{S}\textcolor{orange}{R}\textcolor{red}{J}\textcolor{blue}{C}\textcolor{darkgreen}{Z}\textcolor{orange}{G}\textcolor{red}{P}\textcolor{blue}{B}\textcolor{darkgreen}{F}\textcolor{orange}{C}\textcolor{red}{V}\textcolor{blue}{T}\textcolor{darkgreen}{S}\textcolor{orange}{U}\textcolor{red}{G}\textcolor{blue}{G}\textcolor{darkgreen}{K}\textcolor{orange}{W}\textcolor{red}{P}\textcolor{blue}{W}\textcolor{darkgreen}{U}\textcolor{orange}{H}\textcolor{red}{Z}\textcolor{blue}{C}\textcolor{darkgreen}{R}\textcolor{orange}{F}\textcolor{red}{H}\textcolor{blue}{Y}\textcolor{darkgreen}{K}\textcolor{orange}{F}\textcolor{red}{S}\textcolor{blue}{O}\textcolor{darkgreen}{J}\textcolor{orange}{C}\textcolor{red}{P}\textcolor{blue}{G}\textcolor{darkgreen}{M}\textcolor{orange}{M}\textcolor{red}{R}\textcolor{blue}{B}\textcolor{darkgreen}{V}\textcolor{orange}{U}\textcolor{red}{J}\textcolor{blue}{F}\textcolor{darkgreen}{B}\textcolor{orange}{W}\textcolor{red}{M}\textcolor{blue}{W}\textcolor{darkgreen}{R}\textcolor{orange}{J}\textcolor{red}{W}\textcolor{blue}{E}\textcolor{darkgreen}{J}\textcolor{orange}{I}\textcolor{red}{Z}\textcolor{blue}{G}\textcolor{darkgreen}{G}\textcolor{orange}{L}\textcolor{red}{Z}\textcolor{blue}{G}\textcolor{darkgreen}{L}\textcolor{orange}{H}\textcolor{red}{T}\textcolor{blue}{U}\textcolor{darkgreen}{O}\textcolor{orange}{F}\textcolor{red}{W}\textcolor{blue}{Q}\textcolor{darkgreen}{F}\textcolor{orange}{C}\textcolor{red}{C}\textcolor{blue}{X}\textcolor{darkgreen}{I}\textcolor{orange}{U}\textcolor{red}{C}\textcolor{blue}{O}\textcolor{darkgreen}{G}\textcolor{orange}{T}\textcolor{red}{E}\textcolor{blue}{S}\textcolor{darkgreen}{S}\textcolor{orange}{L}\textcolor{red}{K}
|
||||
\textcolor{blue}{R}\textcolor{darkgreen}{F}\textcolor{orange}{S}\textcolor{red}{L}\textcolor{blue}{N}\textcolor{darkgreen}{T}\textcolor{orange}{C}\textcolor{red}{M}\textcolor{blue}{E}\textcolor{darkgreen}{I}\textcolor{orange}{K}\textcolor{red}{C}\textcolor{blue}{O}\textcolor{darkgreen}{A}\textcolor{orange}{J}\textcolor{red}{I}\textcolor{blue}{S}\textcolor{darkgreen}{A}\textcolor{orange}{M}\textcolor{red}{G}\textcolor{blue}{V}\textcolor{darkgreen}{B}\textcolor{orange}{L}\textcolor{red}{B}\textcolor{blue}{S}\textcolor{darkgreen}{K}\textcolor{orange}{V}\textcolor{red}{W}\textcolor{blue}{N}\textcolor{darkgreen}{S}\textcolor{orange}{U}\textcolor{red}{S}\textcolor{blue}{J}\textcolor{darkgreen}{Z}\textcolor{orange}{W}\textcolor{red}{F}\textcolor{blue}{K}\textcolor{darkgreen}{L}\textcolor{orange}{A}\textcolor{red}{Y}\textcolor{blue}{Y}\textcolor{darkgreen}{S}\textcolor{orange}{F}\textcolor{red}{M}\textcolor{blue}{T}\textcolor{darkgreen}{F}\textcolor{orange}{Y}\textcolor{red}{L}\textcolor{blue}{A}\textcolor{darkgreen}{J}\textcolor{orange}{F}\textcolor{red}{H}\textcolor{blue}{Z}\textcolor{darkgreen}{X}\textcolor{orange}{W}\textcolor{red}{R}\textcolor{blue}{G}\textcolor{darkgreen}{B}\textcolor{orange}{N}\textcolor{red}{X}\textcolor{blue}{K}\textcolor{darkgreen}{O}\textcolor{orange}{K}\textcolor{red}{Y}\textcolor{blue}{F}\textcolor{darkgreen}{Z}\textcolor{orange}{F}\textcolor{red}{S}\textcolor{blue}{G}\textcolor{darkgreen}{I}\textcolor{orange}{Y}\textcolor{red}{O}\textcolor{blue}{N}\textcolor{darkgreen}{B}\textcolor{orange}{S}\textcolor{red}{X}\textcolor{blue}{D}\textcolor{darkgreen}{W}\textcolor{orange}{K}\textcolor{red}{M}\textcolor{blue}{R}\textcolor{darkgreen}{D}\textcolor{orange}{K}\textcolor{red}{M}\textcolor{blue}{M}\textcolor{darkgreen}{V}\textcolor{orange}{P}\textcolor{red}{W}\textcolor{blue}{M}\textcolor{darkgreen}{Y}\textcolor{orange}{V}\textcolor{red}{F}\textcolor{blue}{U}\textcolor{darkgreen}{E}\textcolor{orange}{F}\textcolor{red}{Z}\textcolor{blue}{A}\textcolor{darkgreen}{T}\textcolor{orange}{X}\textcolor{red}{H}
|
||||
\textcolor{blue}{R}\textcolor{darkgreen}{I}\textcolor{orange}{K}\textcolor{red}{X}\textcolor{blue}{N}\textcolor{darkgreen}{K}\textcolor{orange}{K}\textcolor{red}{S}\textcolor{blue}{L}\textcolor{darkgreen}{L}\textcolor{orange}{I}\textcolor{red}{O}\textcolor{blue}{K}\textcolor{darkgreen}{L}\textcolor{orange}{D}\textcolor{red}{R}\textcolor{blue}{B}\textcolor{darkgreen}{V}\textcolor{orange}{P}\textcolor{red}{F}\textcolor{blue}{E}\textcolor{darkgreen}{H}\textcolor{orange}{W}\textcolor{red}{W}\textcolor{blue}{B}\textcolor{darkgreen}{V}\textcolor{orange}{O}\textcolor{red}{J}\textcolor{blue}{M}\textcolor{darkgreen}{M}\textcolor{orange}{F}\textcolor{red}{I}\textcolor{blue}{Y}\textcolor{darkgreen}{A}\textcolor{orange}{F}\textcolor{red}{J}\textcolor{blue}{T}\textcolor{darkgreen}{G}\textcolor{orange}{K}\textcolor{red}{Y}\textcolor{blue}{Y}\textcolor{darkgreen}{O}\textcolor{orange}{L}\textcolor{red}{M}\textcolor{blue}{M}\textcolor{darkgreen}{V}\textcolor{orange}{D}\textcolor{red}{S}\textcolor{blue}{L}\textcolor{darkgreen}{X}\textcolor{orange}{Z}\textcolor{red}{B}\textcolor{blue}{Y}\textcolor{darkgreen}{M}\textcolor{orange}{M}\textcolor{red}{V}\textcolor{blue}{F}\textcolor{darkgreen}{W}\textcolor{orange}{S}\textcolor{red}{G}\textcolor{blue}{I}\textcolor{darkgreen}{S}\textcolor{orange}{C}\textcolor{red}{L}\textcolor{blue}{A}\textcolor{darkgreen}{Y}\textcolor{orange}{Y}\textcolor{red}{O}\textcolor{blue}{L}\textcolor{darkgreen}{F}\textcolor{orange}{T}\textcolor{red}{I}\textcolor{blue}{B}\textcolor{darkgreen}{A}\textcolor{orange}{G}\textcolor{red}{L}\textcolor{blue}{V}\textcolor{darkgreen}{E}\textcolor{orange}{M}\textcolor{red}{T}\textcolor{blue}{Q}\textcolor{darkgreen}{C}\textcolor{orange}{M}\textcolor{red}{D}\textcolor{blue}{T}\textcolor{darkgreen}{D}\textcolor{orange}{Z}\textcolor{red}{B}\textcolor{blue}{D}\textcolor{darkgreen}{X}\textcolor{orange}{F}\textcolor{red}{M}\textcolor{blue}{S}\textcolor{darkgreen}{K}\textcolor{orange}{G}\textcolor{red}{T}\textcolor{blue}{J}\textcolor{darkgreen}{H}\textcolor{orange}{W}\textcolor{red}{I}
|
||||
\textcolor{blue}{M}\textcolor{darkgreen}{R}\textcolor{orange}{R}\textcolor{red}{L}\textcolor{blue}{K}\textcolor{darkgreen}{T}\textcolor{orange}{U}\textcolor{red}{R}\textcolor{blue}{W}\textcolor{darkgreen}{G}\textcolor{orange}{G}\textcolor{red}{C}\textcolor{blue}{O}\textcolor{darkgreen}{U}\textcolor{orange}{D}\textcolor{red}{T}\textcolor{blue}{Y}\textcolor{darkgreen}{W}\textcolor{orange}{C}\textcolor{red}{X}\textcolor{blue}{U}\textcolor{darkgreen}{K}\textcolor{orange}{H}\textcolor{red}{Z}\textcolor{blue}{X}\textcolor{darkgreen}{K}\textcolor{orange}{Z}\textcolor{red}{F}\textcolor{blue}{K}\textcolor{darkgreen}{M}\textcolor{orange}{K}\textcolor{red}{F}\textcolor{blue}{F}\textcolor{darkgreen}{S}\textcolor{orange}{G}\textcolor{red}{T}\textcolor{blue}{K}\textcolor{darkgreen}{V}\textcolor{orange}{W}\textcolor{red}{K}\textcolor{blue}{I}\textcolor{darkgreen}{R}\textcolor{orange}{M}\textcolor{red}{Q}\textcolor{blue}{X}\textcolor{darkgreen}{Y}\textcolor{orange}{B}\textcolor{red}{B}\textcolor{blue}{G}\textcolor{darkgreen}{P}\textcolor{orange}{N}\textcolor{red}{E}\textcolor{blue}{U}\textcolor{darkgreen}{Z}\textcolor{orange}{H}\textcolor{red}{B}\textcolor{blue}{N}\textcolor{darkgreen}{O}\textcolor{orange}{Q}\textcolor{red}{E}\textcolor{blue}{J}\textcolor{darkgreen}{R}\textcolor{orange}{R}\textcolor{red}{K}\textcolor{blue}{H}\textcolor{darkgreen}{S}\textcolor{orange}{K}\textcolor{red}{C}\textcolor{blue}{O}\textcolor{darkgreen}{T}\textcolor{orange}{D}\textcolor{red}{Z}\textcolor{blue}{R}\textcolor{darkgreen}{G}\textcolor{orange}{N}\textcolor{red}{G}\textcolor{blue}{K}\textcolor{darkgreen}{S}\textcolor{orange}{V}\textcolor{red}{B}\textcolor{blue}{K}\textcolor{darkgreen}{Z}\textcolor{orange}{G}\textcolor{red}{Z}\textcolor{blue}{H}\textcolor{darkgreen}{Z}\textcolor{orange}{C}\textcolor{red}{R}\textcolor{blue}{W}\textcolor{darkgreen}{O}\textcolor{orange}{J}\textcolor{red}{I}\textcolor{blue}{Q}\textcolor{darkgreen}{G}\textcolor{orange}{F}\textcolor{red}{J}\textcolor{blue}{S}\textcolor{darkgreen}{O}\textcolor{orange}{U}\textcolor{red}{D}
|
||||
\textcolor{blue}{N}\textcolor{darkgreen}{J}\textcolor{orange}{V}\textcolor{red}{S}\textcolor{blue}{E}\textcolor{darkgreen}{Q}\textcolor{orange}{S}\textcolor{red}{S}\textcolor{blue}{L}\textcolor{darkgreen}{X}\textcolor{orange}{Q}\textcolor{red}{C}\textcolor{blue}{W}\textcolor{darkgreen}{F}\textcolor{orange}{Z}\textcolor{red}{Y}\textcolor{blue}{Y}\textcolor{darkgreen}{W}\textcolor{orange}{K}\textcolor{red}{P}\textcolor{blue}{N}\textcolor{darkgreen}{K}\textcolor{orange}{V}\textcolor{red}{S}\textcolor{blue}{L}\textcolor{darkgreen}{N}\textcolor{orange}{X}\textcolor{red}{V}\textcolor{blue}{K}\textcolor{darkgreen}{H}\textcolor{orange}{R}\textcolor{red}{V}\textcolor{blue}{K}\textcolor{darkgreen}{Z}\textcolor{orange}{X}\textcolor{red}{W}\textcolor{blue}{V}\textcolor{darkgreen}{O}\textcolor{orange}{Y}\textcolor{red}{X}\textcolor{blue}{X}\textcolor{darkgreen}{R}\textcolor{orange}{B}\textcolor{red}{V}\textcolor{blue}{T}\textcolor{darkgreen}{L}\textcolor{orange}{V}\textcolor{red}{G}\textcolor{blue}{Z}\textcolor{darkgreen}{X}\textcolor{orange}{S}\textcolor{red}{T}\textcolor{blue}{S}\textcolor{darkgreen}{L}\textcolor{orange}{P}\textcolor{red}{T}\textcolor{blue}{I}\textcolor{darkgreen}{C}\textcolor{orange}{S}\textcolor{red}{W}\textcolor{blue}{X}\textcolor{darkgreen}{U}\textcolor{orange}{W}\textcolor{red}{N}\textcolor{blue}{X}\textcolor{darkgreen}{W}\textcolor{orange}{X}\textcolor{red}{S}\textcolor{blue}{V}\textcolor{darkgreen}{B}\textcolor{orange}{S}\textcolor{red}{R}\textcolor{blue}{K}\textcolor{darkgreen}{G}\textcolor{orange}{H}\textcolor{red}{I}\textcolor{blue}{R}\textcolor{darkgreen}{B}\textcolor{orange}{V}\textcolor{red}{B}\textcolor{blue}{N}\textcolor{darkgreen}{K}\textcolor{orange}{C}\textcolor{red}{G}\textcolor{blue}{D}\textcolor{darkgreen}{Y}\textcolor{orange}{Y}\textcolor{red}{S}\textcolor{blue}{G}\textcolor{darkgreen}{G}\textcolor{orange}{J}\textcolor{red}{C}\textcolor{blue}{S}\textcolor{darkgreen}{K}\textcolor{orange}{L}\textcolor{red}{Y}\textcolor{blue}{I}\textcolor{darkgreen}{O}\textcolor{orange}{N}\textcolor{red}{X}
|
||||
\textcolor{blue}{Q}\textcolor{darkgreen}{V}\textcolor{orange}{R}\textcolor{red}{T}\textcolor{blue}{R}\textcolor{darkgreen}{F}\textcolor{orange}{E}\textcolor{red}{R}\textcolor{blue}{L}\textcolor{darkgreen}{A}\textcolor{orange}{F}\textcolor{red}{K}\textcolor{blue}{V}\textcolor{darkgreen}{S}\textcolor{orange}{L}\textcolor{red}{R}\textcolor{blue}{R}\textcolor{darkgreen}{R}\textcolor{orange}{W}\textcolor{red}{T}\textcolor{blue}{Q}\textcolor{darkgreen}{C}\textcolor{orange}{H}\textcolor{red}{Z}\textcolor{blue}{X}\textcolor{darkgreen}{I}\textcolor{orange}{Z}\textcolor{red}{T}\textcolor{blue}{X}\textcolor{darkgreen}{X}\textcolor{orange}{W}\textcolor{red}{V}\textcolor{blue}{B}\textcolor{darkgreen}{U}\textcolor{orange}{X}}
|
Before Width: | Height: | Size: 32 KiB |
Before Width: | Height: | Size: 117 KiB |
Before Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 68 KiB |
Before Width: | Height: | Size: 187 KiB |
Before Width: | Height: | Size: 112 KiB |
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 57 KiB |
Before Width: | Height: | Size: 62 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 9.7 KiB |
Before Width: | Height: | Size: 9.7 KiB |
BIN
images/iR.pdf
Before Width: | Height: | Size: 272 KiB |
|
@ -1,310 +0,0 @@
|
|||
|
||||
<!-- saved from url=(0041)https://samsclass.info/141/proj/pRSA2.htm -->
|
||||
<html><head><meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
|
||||
<title>Proj RSA2: Cracking a Short RSA Key (15 pts.)</title>
|
||||
</head>
|
||||
<body bgcolor="#cccccc">
|
||||
<h1>Proj RSA2: Cracking a Short RSA Key (15 pts.)</h1>
|
||||
What you need:
|
||||
<ul>
|
||||
<li>A Mac or Linux computer with Python.
|
||||
</li></ul>
|
||||
<h2>Purpose</h2>
|
||||
To break into RSA encryption without prior knowledge of the
|
||||
private key. This is only possible for small RSA keys,
|
||||
which is why RSA keys should be long for security.
|
||||
<p>
|
||||
</p><h2>Summary</h2>
|
||||
Here's a diagram from the textbook showing the
|
||||
RSA calculations.
|
||||
<blockquote><img src="./Proj RSA2_ Cracking a Short RSA Key (15 pts.)_files/pRSA1-1.png"></blockquote>
|
||||
<h2>Problem Statement</h2>
|
||||
Meghan's public key is (10142789312725007, 5).
|
||||
Find her private key.
|
||||
<h2>1. Factoring n</h2>
|
||||
<h3>Finding the Square Root of n</h3>
|
||||
n = 10142789312725007. This is the product of
|
||||
two prime numbers, p and q.
|
||||
<p>
|
||||
How large are p and q? Well, they can't both be
|
||||
larger than the square root of n, or they'd be larger
|
||||
than n when multiplied together.
|
||||
</p><p>
|
||||
Start Python in interactive mode. On a Mac
|
||||
or Linux box, you can do that by
|
||||
typing this command into a Terminal window:
|
||||
</p><blockquote><b><big><code>
|
||||
python
|
||||
</code></big></b></blockquote>
|
||||
Execute these commands:
|
||||
<blockquote><b><big><code><pre>import math
|
||||
n = 10142789312725007
|
||||
print math.sqrt(n)
|
||||
</pre></code></big></b></blockquote>
|
||||
The square root prints out,
|
||||
as shown below.
|
||||
<blockquote><img src="./Proj RSA2_ Cracking a Short RSA Key (15 pts.)_files/pRSA2-1.png"></blockquote>
|
||||
<h3>Displaying More Decimal Places</h3>
|
||||
It's not clear from that output whether the result
|
||||
is an integer, or just rounded off to one decimal
|
||||
place. To see more decimal places, we'll use
|
||||
the repr() function.
|
||||
<p>
|
||||
Execute this command:
|
||||
</p><blockquote><b><big><code><pre>print repr(math.sqrt(n))
|
||||
</pre></code></big></b></blockquote>
|
||||
Now more decimal places appear,
|
||||
as shown below.
|
||||
<blockquote><img src="./Proj RSA2_ Cracking a Short RSA Key (15 pts.)_files/pRSA2-2.png"></blockquote>
|
||||
<h3>Testing 20 Candidates</h3>
|
||||
So one of the prime factors must be a prime number
|
||||
less than 100711415. All we have to do is try dividing
|
||||
n by odd numbers starting at 100711413 and going down until
|
||||
we get an integer result. (We don't need to test 100711415 because
|
||||
it's divisible by 5 and therefore not a prime number.)
|
||||
<p>
|
||||
A good way to do this is to calculate n mod c, where c is a candidate. If c is a factor of n, the result will be zero.
|
||||
</p><p>
|
||||
We can test the first 20 candidates with a for loop.
|
||||
</p><p>
|
||||
Execute these commands:
|
||||
</p><blockquote><b><big><code><pre>c = 100711413
|
||||
for i in range(c, c-40, -2):
|
||||
print i, n%i
|
||||
</pre></code></big></b></blockquote>
|
||||
Press Enter twice after the last command to terminate the loop.
|
||||
<p>
|
||||
The third candidate is the winner, with a remainder of zero,
|
||||
as shown below.
|
||||
</p><blockquote><img src="./Proj RSA2_ Cracking a Short RSA Key (15 pts.)_files/pRSA2-3.png"></blockquote>
|
||||
<h3>Calculating q</h3>
|
||||
We now know p and we can calculate q.
|
||||
<p>
|
||||
Execute these commands:
|
||||
</p><blockquote><b><big><code><pre>p = 100711409
|
||||
q = n / p
|
||||
print p, q, n, p*q, n - p*q
|
||||
</pre></code></big></b></blockquote>
|
||||
The calculation worked, so the last value is zero,
|
||||
as shown below.
|
||||
<blockquote><img src="./Proj RSA2_ Cracking a Short RSA Key (15 pts.)_files/pRSA2-4.png"></blockquote>
|
||||
<h2>2. Compute phin = (p-1) * (q-1)</h2>
|
||||
Execute these commands:
|
||||
<blockquote><b><big><code><pre>phin = (p-1) * (q-1)
|
||||
print p, q, n, phin
|
||||
</pre></code></big></b></blockquote>
|
||||
The parameters print out, as shown below.
|
||||
<blockquote><img src="./Proj RSA2_ Cracking a Short RSA Key (15 pts.)_files/pRSA2-6.png"></blockquote>
|
||||
<h2>3. Compute Private Key d</h2>
|
||||
We need to find a <b>d</b> with this
|
||||
property:
|
||||
<blockquote>
|
||||
<b> (d * e) mod phin = 1 </b>
|
||||
</blockquote>
|
||||
We know that e = 5 from the Problem Statement.
|
||||
<p>
|
||||
It's not obvious how to find d, but
|
||||
<a href="https://stackoverflow.com/questions/4798654/modular-multiplicative-inverse-function-in-python">there's
|
||||
a simple way to do it in Python</a>, using the
|
||||
"gmpy> library.
|
||||
</p><p>
|
||||
Open a <b>new Terminal window</b>, not the one
|
||||
running Python, and execute this command to
|
||||
download and install a few dependencies and gmpy:
|
||||
</p><blockquote><b><big><code><pre>brew install gmp mpfr mpc
|
||||
pip install gmpy
|
||||
</pre></code></big></b></blockquote>
|
||||
<p>
|
||||
In the Terminal window running python,
|
||||
execute these commands.
|
||||
</p><blockquote><b><big><code><pre>e = 5
|
||||
import gmpy
|
||||
d = gmpy.invert(e, phin)
|
||||
print d, e, d*e %phin
|
||||
</pre></code></big></b></blockquote>
|
||||
We get the value of d, and, to verify it,
|
||||
we see that d*e %phin is indeed 1,
|
||||
as shown below.
|
||||
<blockquote><img src="./Proj RSA2_ Cracking a Short RSA Key (15 pts.)_files/pRSA2-7.png"></blockquote>
|
||||
<h2>4. Encrypting a Message</h2>
|
||||
<h3>Encoding the Message as a Number</h3>
|
||||
Cueball wants to send Meghan this message:
|
||||
<blockquote><b><big><code><pre>Hi!
|
||||
</pre></code></big></b></blockquote>
|
||||
We can only send numbers.
|
||||
Let's convert that message to three bytes of ASCII
|
||||
and then interpret it as a 24-bit binary value.
|
||||
<p>
|
||||
In the Terminal window running python,
|
||||
execute these commands.
|
||||
</p><blockquote><b><big><code><pre>x1 = ord('H')
|
||||
x2 = ord('i')
|
||||
x3 = ord('!')
|
||||
x = x1*256*256 + x2*256 + x3
|
||||
print x
|
||||
</pre></code></big></b></blockquote>
|
||||
We get the value of x,
|
||||
as shown below.
|
||||
<blockquote><img src="./Proj RSA2_ Cracking a Short RSA Key (15 pts.)_files/pRSA2-8.png"></blockquote>
|
||||
<h3>Encrypting the Message with the Public Key</h3>
|
||||
A public key contains two numbers: <b>n</b>
|
||||
and <b>e</b>. To encrypt a message <i>x</i>,
|
||||
use this formula:
|
||||
<blockquote><img src="./Proj RSA2_ Cracking a Short RSA Key (15 pts.)_files/pRSA1-11.png"></blockquote>
|
||||
<p>
|
||||
Execute these commands:
|
||||
</p><blockquote><b><big><code><pre>y = x ** e % n
|
||||
print y
|
||||
</pre></code></big></b></blockquote>
|
||||
The encrypted message appears,
|
||||
as shown below.
|
||||
<blockquote><img src="./Proj RSA2_ Cracking a Short RSA Key (15 pts.)_files/pRSA2-9.png"></blockquote>
|
||||
<h2>5. Decrypting a Message</h2>
|
||||
To decrypt a message, use this formula:
|
||||
<blockquote><img src="./Proj RSA2_ Cracking a Short RSA Key (15 pts.)_files/pRSA1-13.png"></blockquote>
|
||||
Execute these commands:
|
||||
<blockquote><b><big><code><pre>xx = y ** d % n
|
||||
print xx
|
||||
</pre></code></big></b></blockquote>
|
||||
Python crashes,
|
||||
as shown below. It cannot handle such large numbers.
|
||||
<blockquote><img src="./Proj RSA2_ Cracking a Short RSA Key (15 pts.)_files/pRSA2-10.png"></blockquote>
|
||||
To compute such a number, we must use the pow() function.
|
||||
<p>
|
||||
Execute these commands to restart python and restore
|
||||
all the values we calculated previously:
|
||||
</p><blockquote><b><big><code><pre>python
|
||||
n = 10142789312725007
|
||||
p = 100711409
|
||||
q = 100711423
|
||||
phin = (p-1) * (q-1)
|
||||
e = 5
|
||||
import gmpy
|
||||
d = gmpy.invert(e, phin)
|
||||
x1 = ord('H')
|
||||
x2 = ord('i')
|
||||
x3 = ord('!')
|
||||
x = x1*256*256 + x2*256 + x3
|
||||
y = x ** e % n
|
||||
</pre></code></big></b></blockquote>
|
||||
Your screen should look like the image
|
||||
below.
|
||||
<blockquote><img src="./Proj RSA2_ Cracking a Short RSA Key (15 pts.)_files/pRSA2-11.png"></blockquote>
|
||||
Let's try that decryption again with the pow()
|
||||
function. Execute these commands:
|
||||
<blockquote><b><big><code><pre>xx = pow(y, d, n)
|
||||
print xx
|
||||
</pre></code></big></b></blockquote>
|
||||
Now it works, showing our original message in
|
||||
numerical form.
|
||||
<blockquote><img src="./Proj RSA2_ Cracking a Short RSA Key (15 pts.)_files/pRSA2-12.png"></blockquote>
|
||||
<h3>Converting the Message to Readable Text</h3>
|
||||
To convert that number back to letters,
|
||||
execute these commands:
|
||||
<blockquote><b><big><code><pre>xx1 = xx / (256*256)
|
||||
xx2 = (xx - 256*256*xx1) / 256
|
||||
xx3 = xx - 256*256*xx1 - 256*xx2
|
||||
msg = chr(xx1) + chr(xx2) + chr(xx3)
|
||||
print xx1, xx2, xx3, msg
|
||||
</pre></code></big></b></blockquote>
|
||||
Now it works, showing the original message in
|
||||
readable form, as shown below.
|
||||
<blockquote><img src="./Proj RSA2_ Cracking a Short RSA Key (15 pts.)_files/pRSA2-13.png"></blockquote>
|
||||
<hr>
|
||||
<h2>Challenge 2a: Encrypt "OBEY!"</h2>
|
||||
Using the same system and keys, encrypt this message:
|
||||
<blockquote><b><big><pre>OBEY!
|
||||
</pre></big></b></blockquote>
|
||||
<i>Hint 1: The message, converted to a number, is 12 digits long and ends in 41.</i>
|
||||
<p>
|
||||
<i>Hint 2: The encrypted message is 16 digits long and ends in 81.</i>
|
||||
</p><p>
|
||||
Use the form
|
||||
below to put your name on the
|
||||
<a href="http://ad.samsclass.info/python/RSAchal2a-winners.htm">
|
||||
<b>WINNERS PAGE</b></a>.
|
||||
</p><blockquote>
|
||||
<form action="http://ad.samsclass.info/python/RSAchal2a.php" method="post">
|
||||
<table cellpadding="5" border="10"><tbody><tr><td>
|
||||
<table cellpadding="5">
|
||||
<tbody><tr><td><big><b>Your Name (without spaces):</b></big></td>
|
||||
<td><textarea name="u" rows="1" cols="25"></textarea></td></tr>
|
||||
<tr><td><big><b>Encrypted message:</b></big></td>
|
||||
<td><textarea name="p" rows="1" cols="30"></textarea></td></tr>
|
||||
<tr><td colspan="2" align="center"><big><b>
|
||||
<input type="submit" value="SUBMIT"></b></big></td></tr>
|
||||
</tbody></table>
|
||||
</td></tr></tbody></table>
|
||||
</form>
|
||||
</blockquote>
|
||||
<hr>
|
||||
<h2>Challenge 2b: Message to Cueball</h2>
|
||||
Cueball's public key is:
|
||||
<blockquote><b><big><pre>(111036975342601848755221, 13)
|
||||
</pre></big></b></blockquote>
|
||||
Meghan sends this message to Cueball. Decrypt it.
|
||||
<blockquote><b><big><pre>80564890594461648564443
|
||||
</pre></big></b></blockquote>
|
||||
Use the form
|
||||
below to put your name on the
|
||||
<a href="http://ad.samsclass.info/python/RSAchal2b-winners.htm">
|
||||
<b>WINNERS PAGE</b></a>.
|
||||
<blockquote>
|
||||
<form action="http://ad.samsclass.info/python/RSAchal2b.php" method="post">
|
||||
<table cellpadding="5" border="10"><tbody><tr><td>
|
||||
<table cellpadding="5">
|
||||
<tbody><tr><td><big><b>Your Name (without spaces):</b></big></td>
|
||||
<td><textarea name="u" rows="1" cols="25"></textarea></td></tr>
|
||||
<tr><td><big><b>Cleartext Message:</b></big></td>
|
||||
<td><textarea name="p" rows="1" cols="25"></textarea></td></tr>
|
||||
<tr><td colspan="2" align="center"><big><b>
|
||||
<input type="submit" value="SUBMIT"></b></big></td></tr>
|
||||
</tbody></table>
|
||||
</td></tr></tbody></table>
|
||||
</form>
|
||||
</blockquote>
|
||||
<hr>
|
||||
<h2>Challenge 3: Message to Rob</h2>
|
||||
Rob public key is:
|
||||
<blockquote><b><big><pre>(1234592592962967901296297037045679133590224789902207663928489902170626521926687, 5557)
|
||||
</pre></big></b></blockquote>
|
||||
Meghan sends this message to Rob. Decrypt it.
|
||||
<blockquote><b><big><pre>272495530567010327943798078794037733865151017104532777645776936985235709526002
|
||||
</pre></big></b></blockquote>
|
||||
<i>Hint:
|
||||
<a href="https://stackoverflow.com/questions/10725522/arbitrary-precision-of-square-roots">make square root calculations more precise</a>.</i>
|
||||
<p>
|
||||
Use the form
|
||||
below to put your name on the
|
||||
<a href="http://ad.samsclass.info/python/RSAchal2c-winners.htm">
|
||||
<b>WINNERS PAGE</b></a>.
|
||||
</p><blockquote>
|
||||
<form action="http://ad.samsclass.info/python/RSAchal2c.php" method="post">
|
||||
<table cellpadding="5" border="10"><tbody><tr><td>
|
||||
<table cellpadding="5">
|
||||
<tbody><tr><td><big><b>Your Name (without spaces):</b></big></td>
|
||||
<td><textarea name="u" rows="1" cols="25"></textarea></td></tr>
|
||||
<tr><td><big><b>Cleartext Message:</b></big></td>
|
||||
<td><textarea name="p" rows="1" cols="25"></textarea></td></tr>
|
||||
<tr><td colspan="2" align="center"><big><b>
|
||||
<input type="submit" value="SUBMIT"></b></big></td></tr>
|
||||
</tbody></table>
|
||||
</td></tr></tbody></table>
|
||||
</form>
|
||||
</blockquote>
|
||||
<hr>
|
||||
<h2>Sources</h2>
|
||||
<a href="https://stackoverflow.com/questions/4078902/cracking-short-rsa-keys">
|
||||
Cracking short RSA keys</a>
|
||||
<p>
|
||||
<a href="http://www.numberempire.com/primenumbers.php">
|
||||
Prime Numbers Generator and Checker</a>
|
||||
</p><p>
|
||||
<a href="https://stackoverflow.com/questions/10725522/arbitrary-precision-of-square-roots">Arbitrary precision of square roots</a>
|
||||
</p><hr>
|
||||
Posted 3-31-16 by Sam Bowne <br>
|
||||
Winners pages added 8-6-16 <br>
|
||||
Attack server name updated 4-4-17 <br>
|
||||
|
||||
|
||||
</body></html>
|
Before Width: | Height: | Size: 53 KiB |
Before Width: | Height: | Size: 7.6 KiB |
Before Width: | Height: | Size: 7.9 KiB |
Before Width: | Height: | Size: 21 KiB |
Before Width: | Height: | Size: 26 KiB |
Before Width: | Height: | Size: 52 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 87 KiB |
Before Width: | Height: | Size: 30 KiB |
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 26 KiB |
Before Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 14 KiB |
|
@ -1,3 +0,0 @@
|
|||
https://puzzling.stackexchange.com/questions/49099/another-alien-message-but-from-where?noredirect=1&lq=1
|
||||
|
||||
https://puzzling.stackexchange.com/questions/4705/solve-an-alien-message
|
BIN
misc/xAR5Y.png
Before Width: | Height: | Size: 193 KiB |
|
@ -1,2 +0,0 @@
|
|||
abcdefghijklmnopqrstuvwxyz
|
||||
meinschatzbdfgjklopqruvwxy
|
|
@ -1,10 +0,0 @@
|
|||
Dieser Text wurde mit dem gleichen Schluessel verschluesselt, wie das Beispiel aus dem Vortrag. Je laenger der Text ist, desto einfacher faellt die Entschluesselung.
|
||||
|
||||
Drei Ringe den Elbenkoenigen hoch im Licht,
|
||||
Sieben den Zwergenherrschern in ihren Hallen aus Stein,
|
||||
Den Sterblichen, ewig dem Tode verfallen, neun,
|
||||
Einer dem Dunklen Herrn auf dunklem Thron
|
||||
Im Lande Mordor, wo die Schatten drohn.
|
||||
Ein Ring, sie zu knechten, sie alle zu finden,
|
||||
Ins Dunkel zu treiben und ewig zu binden
|
||||
Im Lande Mordor, wo die Schatten drohn.
|
|
@ -1 +0,0 @@
|
|||
yodabcefghijklmnpqrstuvwxz
|
|
@ -1,21 +0,0 @@
|
|||
It is a period of civil war.
|
||||
Rebel spaceships, striking
|
||||
from a hidden base, have won
|
||||
their first victory against
|
||||
the evil Galactic Empire.
|
||||
|
||||
During the battle, Rebel
|
||||
spies managed to steal secret
|
||||
plans to the Empire's
|
||||
ultimate weapon, the DEATH
|
||||
STAR, an armored space
|
||||
station with enough power to
|
||||
destroy an entire planet.
|
||||
|
||||
Pursued by the Empire's
|
||||
sinister agents, Princess
|
||||
Leia races home aboard her
|
||||
starship, custodian of the
|
||||
stolen plans that can save
|
||||
her people and restore
|
||||
freedom to the galaxy.....
|
|
@ -1,2 +0,0 @@
|
|||
abcdefghijklmnopqrstuvwxyz
|
||||
zyxwvutsrqponmlkjihgfedcba
|
|
@ -1,3 +0,0 @@
|
|||
Bei den ersten Beispielen steht jeweils dabei, ob der zugehoerige Klartext deutsch oder englisch ist. Wenn man das nicht weiss, kann man sich die Verteilung der Buchstabenhaeufigkeit ansehen und schauen, ob sie sich einer bekannten Wahrscheinlichkeit entspricht.
|
||||
In spaeteren Beispielen ist die Sprache des Klartexts nicht mehr unbedingt klar. Wenn man einen Text abfaengt, weiss man aber meistens welche Sprache der Sender oder der Empfaenger sprechen. Dadurch kann man die Moeglichkeiten eingrenzen.
|
||||
Allgemein gilt: Je kuerzer der Text, desto schwieriger wird es den Code zu entschluesseln. Das liegt daran, dass kurze Textabschnitte nicht die durchschnittliche Buchstabenverteilung der Sprache aufweisen.
|
|
@ -1,2 +0,0 @@
|
|||
abcdefghijklmnopqrstuvwxyz
|
||||
qwertzuiopasdfghjklyxcvbnm
|
|
@ -1,23 +0,0 @@
|
|||
Hinter eines Baumes Rinde
|
||||
wohnt die Made mit dem Kinde.
|
||||
Sie ist Witwe, denn der Gatte,
|
||||
den sie hatte, fiel vom Blatte.
|
||||
Diente so auf diese Weise
|
||||
einer Ameise als Speise.
|
||||
|
||||
Eines Morgens sprach die Made:
|
||||
"Liebes Kind, ich sehe grade,
|
||||
drüben gibt es frischen Kohl,
|
||||
den ich hol'. So leb denn wohl.
|
||||
Halt! Noch eins, denk, was geschah,
|
||||
geh nicht aus, denk an Papa!"
|
||||
|
||||
Also sprach sie und entwich. —
|
||||
Made junior jedoch schlich
|
||||
hinterdrein, und das war schlecht,
|
||||
denn schon kam ein bunter Specht
|
||||
und verschlang die kleine fade
|
||||
Made ohne Gnade. — Schade.
|
||||
|
||||
Hinter eines Baumes Rinde
|
||||
ruft die Made nach dem Kinde.
|
|
@ -1,31 +0,0 @@
|
|||
Es war einmal ein kleines süßes Mädchen, das hatte jedermann lieb, der sie nur ansah, am allerliebsten aber ihre Großmutter, die wusste gar nicht, was sie alles dem Kinde geben sollte. Einmal schenkte sie ihm ein Käppchen von rotem Samt, und weil ihm das so wohl stand, und es nichts anders mehr tragen wollte, hieß es nur das Rotkäppchen. Eines Tages sprach seine Mutter zu ihm: "Komm, Rotkäppchen, da hast du ein Stück Kuchen und eine Flasche Wein, bring das der Großmutter hinaus; sie ist krank und schwach und wird sich daran laben. Mach dich auf, bevor es heiß wird, und wenn du hinauskommst, so geh hübsch sittsam und lauf nicht vom Wege ab, sonst fällst du und zerbrichst das Glas, und die Großmutter hat nichts. Und wenn du in ihre Stube kommst, so vergiss nicht guten Morgen zu sagen und guck nicht erst in allen Ecken herum!"
|
||||
|
||||
|
||||
|
||||
"Ich will schon alles richtig machen," sagte Rotkäppchen zur Mutter, und gab ihr die Hand darauf. Die Großmutter aber wohnte draußen im Wald, eine halbe Stunde vom Dorf. Wie nun Rotkäppchen in den Wald kam, begegnete ihm der Wolf. Rotkäppchen aber wusste nicht, was das für ein böses Tier war, und fürchtete sich nicht vor ihm. "Guten Tag, Rotkäppchen!" sprach er. "Schönen Dank, Wolf!" - "Wo hinaus so früh, Rotkäppchen?" - "Zur Großmutter." - "Was trägst du unter der Schürze?" - "Kuchen und Wein. Gestern haben wir gebacken, da soll sich die kranke und schwache Großmutter etwas zugut tun und sich damit stärken." - "Rotkäppchen, wo wohnt deine Großmutter?" - "Noch eine gute Viertelstunde weiter im Wald, unter den drei großen Eichbäumen, da steht ihr Haus, unten sind die Nusshecken, das wirst du ja wissen," sagte Rotkäppchen. Der Wolf dachte bei sich: Das junge, zarte Ding, das ist ein fetter Bissen, der wird noch besser schmecken als die Alte. Du musst es listig anfangen, damit du beide schnappst. Da ging er ein Weilchen neben Rotkäppchen her, dann sprach er: "Rotkäppchen, sieh einmal die schönen Blumen, die ringsumher stehen. Warum guckst du dich nicht um? Ich glaube, du hörst gar nicht, wie die Vöglein so lieblich singen? Du gehst ja für dich hin, als wenn du zur Schule gingst, und ist so lustig haussen in dem Wald."
|
||||
|
||||
|
||||
|
||||
Rotkäppchen schlug die Augen auf, und als es sah, wie die Sonnenstrahlen durch die Bäume hin und her tanzten und alles voll schöner Blumen stand, dachte es: Wenn ich der Großmutter einen frischen Strauß mitbringe, der wird ihr auch Freude machen; es ist so früh am Tag, dass ich doch zu rechter Zeit ankomme, lief vom Wege ab in den Wald hinein und suchte Blumen. Und wenn es eine gebrochen hatte, meinte es, weiter hinaus stände eine schönere, und lief danach und geriet immer tiefer in den Wald hinein. Der Wolf aber ging geradewegs nach dem Haus der Großmutter und klopfte an die Türe. "Wer ist draußen?" - "Rotkäppchen, das bringt Kuchen und Wein, mach auf!" - "Drück nur auf die Klinke!" rief die Großmutter, "ich bin zu schwach und kann nicht aufstehen." Der Wolf drückte auf die Klinke, die Türe sprang auf und er ging, ohne ein Wort zu sprechen, gerade zum Bett der Großmutter und verschluckte sie. Dann tat er ihre Kleider an, setzte ihre Haube auf, legte sich in ihr Bett und zog die Vorhänge vor.
|
||||
|
||||
|
||||
|
||||
Rotkäppchen aber, war nach den Blumen herumgelaufen, und als es so viel zusammen hatte, dass es keine mehr tragen konnte, fiel ihm die Großmutter wieder ein, und es machte sich auf den Weg zu ihr. Es wunderte sich, dass die Tür aufstand, und wie es in die Stube trat, so kam es ihm so seltsam darin vor, dass es dachte: Ei, du mein Gott, wie ängstlich wird mir's heute zumut, und bin sonst so gerne bei der Großmutter! Es rief: "Guten Morgen," bekam aber keine Antwort. Darauf ging es zum Bett und zog die Vorhänge zurück. Da lag die Großmutter und hatte die Haube tief ins Gesicht gesetzt und sah so wunderlich aus. "Ei, Großmutter, was hast du für große Ohren!" - "Dass ich dich besser hören kann!" - "Ei, Großmutter, was hast du für große Augen!" - "Dass ich dich besser sehen kann!" - "Ei, Großmutter, was hast du für große Hände!" - "Dass ich dich besser packen kann!" - "Aber, Großmutter, was hast du für ein entsetzlich großes Maul!" - "Dass ich dich besser fressen kann!" Kaum hatte der Wolf das gesagt, so tat er einen Satz aus dem Bette und verschlang das arme Rotkäppchen.
|
||||
|
||||
|
||||
|
||||
Wie der Wolf seinen Appetit gestillt hatte, legte er sich wieder ins Bett, schlief ein und fing an, überlaut zu schnarchen. Der Jäger ging eben an dem Haus vorbei und dachte: Wie die alte Frau schnarcht! Du musst doch sehen, ob ihr etwas fehlt. Da trat er in die Stube, und wie er vor das Bette kam, so sah er, dass der Wolf darin lag. "Finde ich dich hier, du alter Sünder," sagte er, "ich habe dich lange gesucht." Nun wollte er seine Büchse anlegen, da fiel ihm ein, der Wolf könnte die Großmutter gefressen haben und sie wäre noch zu retten, schoss nicht, sondern nahm eine Schere und fing an, dem schlafenden Wolf den Bauch aufzuschneiden. Wie er ein paar Schnitte getan hatte, da sah er das rote Käppchen leuchten, und noch ein paar Schnitte, da sprang das Mädchen heraus und rief: "Ach, wie war ich erschrocken, wie war's so dunkel in dem Wolf seinem Leib!" Und dann kam die alte Großmutter auch noch lebendig heraus und konnte kaum atmen. Rotkäppchen aber holte geschwind große Steine, damit füllten sie dem Wolf den Leib, und wie er aufwachte, wollte er fortspringen, aber die Steine waren so schwer, dass er gleich niedersank und sich totfiel.
|
||||
|
||||
|
||||
|
||||
Da waren alle drei vergnügt. Der Jäger zog dem Wolf den Pelz ab und ging damit heim, die Großmutter aß den Kuchen und trank den Wein, den Rotkäppchen gebracht hatte, und erholte sich wieder; Rotkäppchen aber dachte: Du willst dein Lebtag nicht wieder allein vom Wege ab in den Wald laufen, wenn dir's die Mutter verboten hat.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Es wird auch erzählt, dass einmal, als Rotkäppchen der alten Großmutter wieder Gebackenes brachte, ein anderer Wolf es angesprochen und vom Wege habe ableiten wollen. Rotkäppchen aber hütete sich und ging geradefort seines Wegs und sagte der Großmutter, dass es dem Wolf begegnet wäre, der ihm guten Tag gewünscht, aber so bös aus den Augen geguckt hätte: "Wenn's nicht auf offener Straße gewesen wäre, er hätte mich gefressen." - "Komm," sagte die Großmutter, "wir wollen die Türe verschließen, dass er nicht hereinkann." Bald danach klopfte der Wolf an und rief: "Mach auf, Großmutter, ich bin das Rotkäppchen, ich bring dir Gebackenes." Sie schwiegen aber und machten die Türe nicht auf. Da schlich der Graukopf etlichemal um das Haus, sprang endlich aufs Dach und wollte warten, bis Rotkäppchen abends nach Hause ginge, dann wollte er ihm nachschleichen und wollt's in der Dunkelheit fressen. Aber die Großmutter merkte, was er im Sinne hatte. Nun stand vor dem Haus ein großer Steintrog, Da sprach sie zu dem Kind: "Nimm den Eimer, Rotkäppchen, gestern hab ich Würste gekocht, da trag das Wasser, worin sie gekocht sind, in den Trog!" Rotkäppchen trug so lange, bis der große, große Trog ganz voll war. Da stieg der Geruch von den Würsten dem Wolf in die Nase. Er schnupperte und guckte hinab, endlich machte er den Hals so lang, dass er sich nicht mehr halten konnte, und anfing zu rutschen; so rutschte er vom Dach herab, gerade in den großen Trog hinein und ertrank. Rotkäppchen aber ging fröhlich nach Haus, und von nun an tat ihm niemand mehr etwas zuleide.
|
||||
|
||||
|
||||
|
||||
ENDE
|
|
@ -1 +0,0 @@
|
|||
Tg stgsf Djia tf Ejnsg, nm dseqs stg Ajeetq. Gtiaq tg stgsf csriaqsg, piafrqythsg Djia, vj sp gmia Fjnso otsiaq rgn Vrofytkcsd ujg nsg Vmsgnsg asomeamsghsg, rgn mria gtiaq tg stgso qojibsgsg, bmadsg Pmgnhores jags Qtpias rgn Pqrsads, vj fmg ptia yrf Sppsg atgpsqysg bjsggqs: gstg, nmp Djia vmo stgs Ajeetqajsads, rgn nmp astppq, sp vmo psao bjfcjoqmesd.
|
|
@ -1,2 +0,0 @@
|
|||
ABCDEFGHIJKLMNOPQRSTUVWXYZ
|
||||
MEINSCHATZBDFGJKLOPQRUVWXY
|
|
@ -1 +0,0 @@
|
|||
In einem Loch im Boden, da lebte ein Hobbit. Nicht in einem feuchten, schmutzigen Loch, wo es nach Moder riecht und Wurmzipfel von den Waenden herabhaengen, und auch nicht in einer trockenen, kahlen Sandgrube ohne Tische und Stuehle, wo man sich zum Essen hinsetzen koennte: nein, das Loch war eine Hobbithoehle, und das heisst, es war sehr komfortabel.
|
|
@ -1,2 +0,0 @@
|
|||
abcdefghijklmnopqrstuvwxyz
|
||||
asdfglkjhbceimnopqrtuvwxyz
|
|
@ -1 +0,0 @@
|
|||
Ich hoffe Du hast alle Texte erfolgreich entschluesseln koennen. Wenn ja, sag mir einfach die ersten zehn Buchstaben, die in der Substitutionschiffre fuer den ersten deutschen Text verwendet wurden. Das heisst, Du musst fuer die Buchstaben A bis J herausfinden, zu welchem Buchstaben sie im Geheimtext werden. Zur Belohnung gibt es wieder Mate und Suessigkeiten.
|
BIN
presentation.pdf
|
@ -133,7 +133,7 @@ showstringspaces=false %
|
|||
\definecolor{darkgreen}{rgb}{0.0,0.5,0.0}
|
||||
|
||||
\title[Code-Break-Party]{Code-Break-Party}
|
||||
\author{Simon Pirkelmann}
|
||||
\author{}
|
||||
\institute{\includegraphics[scale=0.5]{images/iR.pdf}}
|
||||
\date{January 27th, 2020}
|
||||
|
||||
|
@ -522,28 +522,17 @@ $\rightarrow$ Gleiche Buchstaben werden nicht immer gleich verschlüsselt
|
|||
|
||||
\texttt{OXSTMZLWDZYSCHIZOUFKTLRYHWNDPBNOQLBVWLQMUT
|
||||
WPYBHFICHBCFABQBBPUZKHSWGAJAPJRETCRABZLFJT}
|
||||
\\[1cm]
|
||||
Hier der gleiche Text mit einer anderen Walzenstellung:
|
||||
\texttt{JJSSHINCLYLAQUVENENTYRQOYYLNOLNVCUFPWYHIPH
|
||||
TLWUZBRJXEJNOHLUTIXAWFEQRPBHYFILLPDAUJDQTP}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
Weitere Themen
|
||||
More topics
|
||||
\begin{itemize}
|
||||
\item Buch-Verschlüsselung
|
||||
\item Known Plaintext Angriffe
|
||||
\item RSA
|
||||
\item Book cipher
|
||||
\item known plaintext attack
|
||||
\item key reuse attack (for one-time-pad)
|
||||
\end{itemize}
|
||||
Webseiten zum Thema:
|
||||
|
||||
\url{https://www.cryptool.org/en/cto-ciphers/caesar}
|
||||
\url{https://cryptii.com/}
|
||||
\url{https://www.guballa.de/substitution-solver}
|
||||
\url{https://www.dcode.fr/en}
|
||||
\url{https://hackaday.com/2017/08/22/the-enigma-enigma-how-the-enigma-machine-worked/}
|
||||
\url{https://projects.raspberrypi.org/en/projects/octapi-brute-force-enigma}
|
||||
https://www.cryptool.org/en/cto-ciphers/caesar
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
|
125
vigenere/1-cipher.txt
Normal file
|
@ -0,0 +1,125 @@
|
|||
Gbcy mcoj j vijbauhn veewah, wnwds I jgadaand, cssy ahv jewah,
|
||||
Obsj aahq n qqjrnz ofr cojvoqb eories oz xbrcxctkb dcry—
|
||||
Ouihn R nurvsd, hwnrhh wavdabg, mmqdawuy zvwfe wsze w cjpvwfu,
|
||||
Am gs skvn ots ysnndl rwyyitu, jopjaag wc vy ivsabyj qoka.
|
||||
“’Ciy ggae pafipxa,” I silhelwq, “twyyitu sh ms uuaiknr jcgf—
|
||||
Ohdl tdrb atr fctbaag ixae.”
|
||||
|
||||
Gv, vwsnaacpuh I xsesmvwe ip fjs ob lve vdrag Mnckatsr;
|
||||
Ufq ewlq skdsfanw qyewp espwf wlghgdc rty uzcsn mcoj cqe lzgcr.
|
||||
Ystenuh I cwkvex lue ixaruk;—noihdl I djm suiyvt ng oonaxw
|
||||
Lfga ms tbogb buxqwosy gs skaaoc—ggfrio son cqe rckh Lyfbra—
|
||||
Oxr zvw falw nnz ajdoofh muaqej fqos hzs ahyrlo wjmk Zwbolw—
|
||||
Aainueyg zsry xbr aenrscjs.
|
||||
|
||||
Ahv gha brlqsf, gax, macaacaob jisndvnc xo egqz dulhye ydatgwf
|
||||
Hhlaylam ve—lwdzex er wecq fgblosnap taaaoxg fsvyj sehc kelcjs;
|
||||
Si luap wxw, zc khifd gha knazwfu oz el hajat, O glcox jrpajcitu
|
||||
“’Lws mgze rrbizcj snnjraprwg kblfahur ap vh cnoepel vbon—
|
||||
Bxmk zshe pafipxa ethjsanaag awcrgbus an el cdjvbkf vcol;—
|
||||
Luio rc iy ofr niluijp voxs.”
|
||||
|
||||
Hfemwathh vy ycmz glwj spaxnmsj; vemagaprwg zvwb ni dbncna,
|
||||
“Sof,” koix A, “br Ijmas, hjils qbun oxrmwnsnykf I evylufw;
|
||||
Pun lue bjlt og A kam fnplrwg, gbv go awathh hoa qsae lscpewp,
|
||||
Atr kc fuaathh hoa qsae nscpewp, tgdhwna sg mu lqaspwf dige,
|
||||
Tdjc I yqsfcy ons odae O vworx qbu”—dnae O chsnyv jizn chk rgcr;—
|
||||
Xsekjnbs zvwfe ufq nkcqitu ecry.
|
||||
|
||||
Vrel rwtu hzot xsekjnbs vswfihy, yojp R szcgr tbwee sxwdkfabg, zwnrewp,
|
||||
Duithihy, qrajvitu vfeuef nk vxrzod svyj qannm tu rjsag trfkan;
|
||||
Bah lve mayejln wgg mbblgxej, jwd zvw gtcdynabb ggjw bo ngxej,
|
||||
Jwd zvw cnfq jonm chkfw gpicrn sjb tns ovimhrram foxr, “Dsnijr?”
|
||||
Tdrb I cvagpyjrd, wwm at suvo gmemqand houy tbw jonm, “Uetcjs!”—
|
||||
Myjrlu cqiy ofr niluijp voxs.
|
||||
|
||||
Toce aatk cqe ivsabyj gunwrnm, odz ms kbuh frtnwf ae vmenewp,
|
||||
Sucf oguaa I dnjrj o lopjaag oxvecvsh limqen cqat pwtolw.
|
||||
“Funnuy,” yoar I, “mmeehh chgh ag siertdrwg gh em wcfqos ujtzwus;
|
||||
Lyl ze onn, tnsf, khul ghaanaz wk, onx luio vhszsjm erhyonn—
|
||||
Uez aq veujg ba bcirz s aogwat wwm tnwk aymlrru ngprcjs;—
|
||||
’Tck gha frnj ofr niluijp voxs!”
|
||||
|
||||
Gdeh zrra R olaby hhy kuupcnr, cvwb, wclu mwwh a lzaft ufq fhdctkf,
|
||||
Ab tbwee ocnpvsv o snsgehh Aabsf cf nzr swrwtrm voym gs ykan;
|
||||
Nuh lve fwnsp xkeogsbcy enda qn; nuh s aihmge ocxpvsv cr mlnyam qe;
|
||||
Hil, kinz ziaw xf rcjr ol dndu, ynrivwr avgie ih lhgatsr xgbr—
|
||||
Lnacnsv ipif n bqbc ol Dszluk wuoc jbujw ay wznmxna ducj—
|
||||
Deluuez, jwd yol, onx fbtdrwg scjs.
|
||||
|
||||
Tbwa tdrb ehcfm bcjq bapdirwfu ms knd bjwce wfho mevlewp,
|
||||
Be hzs glsie wwm szsjb dyubrqv xf zvw qoofgejjwck wl kolw,
|
||||
“Ghkdph zvq qrykg ba bqoxb sbd mznvaw, chui,” A gacv, “nrp bdrk bg qrunrn,
|
||||
Cqjszzq urce nnz jwcosfh Runrn sjwdkfabg zjbm pqn Nouzhls kuonn—
|
||||
Cerz es wbsg tdh uoxrdm nuer io xw tns Fwgbl’f Phdcotwsb sbgee!”
|
||||
Mdxtn hzs Runrn “Jneexagfe.”
|
||||
|
||||
Gmph E vjrbsdzex luio dwggwfzy zgjl px qegf vwswghron bo vzswnfq,
|
||||
Ghkdph ohk onmorr hrctrs esahaag—hrctrs jslynnnyh koxs;
|
||||
Xcr qw pajwxt nsdd aajreewp tnol bo faiijp qusof pecft
|
||||
Erna ykh oos vdrsonm wohz geyaag xrad gpgje baf cdjvbkf vcol—
|
||||
Tvrz xa bkokh ujga tdn bcazhhulwq bqbc ahcns hck phwvkex rgcr,
|
||||
Qagh odlh toes am “Frvaavoxs.”
|
||||
|
||||
Tit nzr Rwenn, ywlhihy yojnuy ub lve jdncem kuyh, kdoew bnhh
|
||||
Chgh gbe qged, wb rf nwk good vn pqjt ubw kolv ue zrm oahhcul.
|
||||
Fbtdrwg lojhhyj ghaw qe ahlsryv—aop j oeghzsr nzrn dn olahlsryv—
|
||||
Gihu R siojqefq zonn chgb eitnweez “Xchkf xfiyfqs djee lzgkn vwsonn—
|
||||
Xn zvw aoljbw dn firz dsapw ze, wb vy Nchss bsie buxwt pwtolw.”
|
||||
Ghaw chk pafd msvd “Jneexagfe.”
|
||||
|
||||
Mlnrpund gh lve mlvlhwnsy pjckyf oy nnyle gg opndl slxtet,
|
||||
“Rgibndrso,” bjij W, “ovan ag upcnry wk wtm galu bcoiy sbd mlbra
|
||||
Ljumvl trie foin dnnohdy gsftaa fhua mbmyjpibdu Dogsgtyj
|
||||
Sohuxwkr xosn sad bxulukwr fukgen crlr vag sifts kwn bafvsn vgee—
|
||||
Prul zvw rilyrs ko qiy Vgde nznt inuatqzcls thrznw bufw
|
||||
Cf ‘Hwien—wnvkfecry’.”
|
||||
|
||||
Tht pqn Rgjwb snayl xnpuozabg udy mu ojnim abti kzihrwg,
|
||||
Yhjoiazg I sqnersv o cokuikwnd yssh ih xeojc xf hwjr, ahv ouoc jnj rgcr;
|
||||
Nzrn, qyxn zvw jefnrt orwkoby, W bylbog vhskzx ho faakewp
|
||||
Fgbum uhlb fwwly, zvabkcft wdjc tnwk cmcfbuo krrj cx molw—
|
||||
Jhwc chog yfig, magwrwle, uzosndl, gwdwt, gbv cmcfbuo krrj cx molw
|
||||
Zewwc it qjcaeaag “Jneexagfe.”
|
||||
|
||||
Nzvs E bjt kbyogyv vn cdnsywfu, bol ao ohulgpds erheeobrnm
|
||||
Hg hhy xbwh fqoys xwelq ryab woc pmfnyv vnpx vy hckcm’m ubra;
|
||||
Cqiy ofr mijr I ojc dojabihy, jipq vy nssr an wnsa ancrwfwna
|
||||
Ga tdn luyvacn’m nrlrnc lobabg nznt pqn lgah-ziazg ghxjtkr g’sr,
|
||||
Vmg wdxbe bsdjen-nvohnc lobabg qagh pqn lgah-ziazg ghxjtoby c’el,
|
||||
Kue oqjlr djssm, su, naenrscjs!
|
||||
|
||||
Tbwa, macqoauzh, tbw nin paec rwbsyj, cenodmkr xfog sa ujbnet qwbsyj
|
||||
Fwqwp be Gwfajzvm sqxsk tgct-zsylo crnqzwr oh lue pdotkr xzoij.
|
||||
“Jraclh,” O qjwex, “luy Cxm hghz zehl ghan—ky zvwge uftehb qe nolv syfg tdnn
|
||||
Rkghwty—jrslrce gbv bejwatdn orua lvy gwzonrns ut Dsnijr;
|
||||
Qqjof, uv iiazx gheb titr fspyfgha jwd lcjuen luio uxsz Zwbolw!”
|
||||
Dukcq tns Jovyf “Aernamufw.”
|
||||
|
||||
“Drihuep!” bjij W, “lvihy bf aerl!—vfgdhyl fteuu, il pafd ij qerru!—
|
||||
Wnslvel Lrmlcnr ysfh, ol ouepqnr zsedeml goobnd zvws hyjr aoqxrk,
|
||||
Rwgofsge unc arz mbdumatam, xn zvag dykrrp ujnj sfqhufgez—
|
||||
Xw tnwk vogw oy Dxaruf zouhlrd—pnul ss lfufq, V iiyuoxs—
|
||||
Ag tbwee—eb chkfw pafe vn Cruegr?—lslf er—tauu mk, W aapfgee!”
|
||||
Mdxtn hzs Runrn “Jneexagfe.”
|
||||
|
||||
“Jjbpdnc!” sgwv W, “tbaag ko nvoz!—hfojzrt ocrlr, wx pilv br zneir!
|
||||
Pq hhul Uewenn zvsh byfqs wkxvk ik—py nznt Cxm wk pghh uvbra—
|
||||
Cnlr hzws mghl srch ycjfoq dndaw rf, cwlvih lue zrbtgbl Oixwan,
|
||||
Ec bhgzd qlukc a ojrnzsv aacvrn sqxm zvw onawys jjve Rsfcry—
|
||||
Uyaoy j rgfw onx jndejwt soareh ouoi cqe gbyslm fnma Unnufw.”
|
||||
Euilu tdn Aabsf “Bepwemkan.”
|
||||
|
||||
“Bk hzot qged kda souf cf jsetewp, bofv cr zarnz!” R bhxwwyex, mcspjatoby—
|
||||
“Uen luea kjcq wfho nzr tavyeyh sbd nzr Nepqt’y Dditifvaj bqoxs!
|
||||
Dsapw ao xujcq ddimy sf a pxtet cx hhul yia cqy ycmz hulu slxtet!
|
||||
Zwovy el lkwnlobwgs oforktnn!—wiah tbw ouoc jbujw ay xgbr!
|
||||
Pjte zvq peuc srkv xuz aq veujg, ajm caqs lvy zgem baxm utx ay xgbr!”
|
||||
Mdxtn hzs Runrn “Jneexagfe.”
|
||||
|
||||
Ufq tdn Aabsf, bepwe fhrctoby, gtcdy io brtzwfu, snayl eb bizhabg
|
||||
If gha yjlrwv puml bf Ljulgg bisn soorn vy ivsabyj qoka;
|
||||
Jnj vag eswf hwen arz lve mwrmewp ol o vsmif’f tdjc iy rjsagaag,
|
||||
Wwm tns domj-dvgdc x’ex vaa snjrairwg zvjcwm zvs oqjduk gb tbw slkxa;
|
||||
Atr em simy fnxv oah lvan kuazxf tnol ziyk slkjcitu gb tbw slkxa
|
||||
Snodz by dvfpnm—nkjwfmijr!
|
|
@ -1 +0,0 @@
|
|||
goethe
|
|
@ -1,110 +0,0 @@
|
|||
Hat der alte Hexenmeister
|
||||
Sich doch einmal wegbegeben!
|
||||
Und nun sollen seine Geister
|
||||
Auch nach meinem Willen leben.
|
||||
Seine Wort' und Werke
|
||||
Merkt ich und den Brauch,
|
||||
Und mit Geistesstärke
|
||||
Tu' ich Wunder auch.
|
||||
|
||||
Walle! walle
|
||||
Manche Strecke,
|
||||
Dass, zum Zwecke,
|
||||
Wasser fliesse,
|
||||
Und mit reichem, vollem Schwalle
|
||||
Zu dem Bade sich ergiesse.
|
||||
|
||||
Und nun komm, du alter Besen!
|
||||
Nimm die schlechten Lumpenhuellen!
|
||||
Bist schon lange Knecht gewesen;
|
||||
Nun erfuelle meinen Willen!
|
||||
Auf zwei Beinen stehe,
|
||||
Oben sei ein Kopf!
|
||||
Eile nun und gehe
|
||||
Mit dem Wassertopf!
|
||||
|
||||
Walle! walle
|
||||
Manche Strecke,
|
||||
Dass, zum Zwecke,
|
||||
Wasser fliesse
|
||||
Und mit reichem, vollem Schwalle
|
||||
Zu dem Bade sich ergiesse.
|
||||
|
||||
Seht, er laeuft zum Ufer nieder;
|
||||
Wahrlich! ist schon an dem Flusse,
|
||||
Und mit Blitzesschnelle wieder
|
||||
Ist er hier mit raschem Gusse.
|
||||
Schon zum zweiten Male!
|
||||
Wie das Becken schwillt!
|
||||
Wie sich jede Schale
|
||||
Voll mit Wasser fuellt!
|
||||
|
||||
Stehe! stehe!
|
||||
Denn wir haben
|
||||
Deiner Gaben
|
||||
Vollgemessen! -
|
||||
Ach, ich merk es! Wehe! wehe!
|
||||
Hab ich doch das Wort vergessen!
|
||||
|
||||
Ach, das Wort, worauf am Ende
|
||||
Er das wird, was er gewesen.
|
||||
Ach, er läuft und bringt behende!
|
||||
Waerst du doch der alte Besen!
|
||||
Immer neue Guesse
|
||||
Bringt er schnell herein,
|
||||
Ach! und hundert Fluesse
|
||||
Stuerzen auf mich ein.
|
||||
|
||||
Nein, nicht laenger
|
||||
Kann ich's lassen;
|
||||
Will ihn fassen.
|
||||
Das ist Tuecke!
|
||||
Ach! nun wird mir immer baenger!
|
||||
Welche Miene! welche Blicke!
|
||||
|
||||
O du Ausgeburt der Hoelle!
|
||||
Soll das ganze Haus ersaufen?
|
||||
Seh ich ueber jede Schwelle
|
||||
Doch schon Wasserstroeme laufen.
|
||||
Ein verruchter Besen,
|
||||
Der nicht hoeren will!
|
||||
Stock, der du gewesen,
|
||||
Steh doch wieder still!
|
||||
|
||||
Willst's am Ende
|
||||
Gar nicht lassen?
|
||||
Will dich fassen,
|
||||
Will dich halten
|
||||
Und das alte Holz behende
|
||||
Mit dem scharfen Beile spalten.
|
||||
|
||||
Seht, da kommt er schleppend wieder!
|
||||
Wie ich mich nur auf dich werfe,
|
||||
Gleich, o Kobold, liegst du nieder;
|
||||
Krachend trifft die glatte Schaerfe.
|
||||
Wahrlich! brav getroffen!
|
||||
Seht, er ist entzwei!
|
||||
Und nun kann ich hoffen,
|
||||
Und ich atme frei!
|
||||
|
||||
Wehe! wehe!
|
||||
Beide Teile
|
||||
Stehn in Eile
|
||||
Schon als Knechte
|
||||
Voellig fertig in die Hoehe!
|
||||
|
||||
nd sie laufen! Nass und naesser
|
||||
ird's im Saal und auf den Stufen.
|
||||
elch entsetzliches Gewaesser!
|
||||
Herr und Meister! hoer mich rufen! -
|
||||
Ach, da kommt der Meister!
|
||||
Herr, die Not ist gross!
|
||||
Die ich rief, die Geister,
|
||||
Werd ich nun nicht los.
|
||||
|
||||
"In die Ecke,
|
||||
Besen! Besen!
|
||||
Seid's gewesen.
|
||||
Denn als Geister
|
||||
Ruft euch nur, zu seinem Zwecke
|
||||
Erst hervor der alte Meister."
|
|
@ -1 +0,0 @@
|
|||
imaginaerraum
|
|
@ -1,125 +0,0 @@
|
|||
Once upon a midnight dreary, while I pondered, weak and weary,
|
||||
Over many a quaint and curious volume of forgotten lore—
|
||||
While I nodded, nearly napping, suddenly there came a tapping,
|
||||
As of some one gently rapping, rapping at my chamber door.
|
||||
“’Tis some visitor,” I muttered, “tapping at my chamber door—
|
||||
Only this and nothing more.”
|
||||
|
||||
Ah, distinctly I remember it was in the bleak December;
|
||||
And each separate dying ember wrought its ghost upon the floor.
|
||||
Eagerly I wished the morrow;—vainly I had sought to borrow
|
||||
From my books surcease of sorrow—sorrow for the lost Lenore—
|
||||
For the rare and radiant maiden whom the angels name Lenore—
|
||||
Nameless here for evermore.
|
||||
|
||||
And the silken, sad, uncertain rustling of each purple curtain
|
||||
Thrilled me—filled me with fantastic terrors never felt before;
|
||||
So that now, to still the beating of my heart, I stood repeating
|
||||
“’Tis some visitor entreating entrance at my chamber door—
|
||||
Some late visitor entreating entrance at my chamber door;—
|
||||
This it is and nothing more.”
|
||||
|
||||
Presently my soul grew stronger; hesitating then no longer,
|
||||
“Sir,” said I, “or Madam, truly your forgiveness I implore;
|
||||
But the fact is I was napping, and so gently you came rapping,
|
||||
And so faintly you came tapping, tapping at my chamber door,
|
||||
That I scarce was sure I heard you”—here I opened wide the door;—
|
||||
Darkness there and nothing more.
|
||||
|
||||
Deep into that darkness peering, long I stood there wondering, fearing,
|
||||
Doubting, dreaming dreams no mortal ever dared to dream before;
|
||||
But the silence was unbroken, and the stillness gave no token,
|
||||
And the only word there spoken was the whispered word, “Lenore?”
|
||||
This I whispered, and an echo murmured back the word, “Lenore!”—
|
||||
Merely this and nothing more.
|
||||
|
||||
Back into the chamber turning, all my soul within me burning,
|
||||
Soon again I heard a tapping somewhat louder than before.
|
||||
“Surely,” said I, “surely that is something at my window lattice;
|
||||
Let me see, then, what thereat is, and this mystery explore—
|
||||
Let my heart be still a moment and this mystery explore;—
|
||||
’Tis the wind and nothing more!”
|
||||
|
||||
Open here I flung the shutter, when, with many a flirt and flutter,
|
||||
In there stepped a stately Raven of the saintly days of yore;
|
||||
Not the least obeisance made he; not a minute stopped or stayed he;
|
||||
But, with mien of lord or lady, perched above my chamber door—
|
||||
Perched upon a bust of Pallas just above my chamber door—
|
||||
Perched, and sat, and nothing more.
|
||||
|
||||
Then this ebony bird beguiling my sad fancy into smiling,
|
||||
By the grave and stern decorum of the countenance it wore,
|
||||
“Though thy crest be shorn and shaven, thou,” I said, “art sure no craven,
|
||||
Ghastly grim and ancient Raven wandering from the Nightly shore—
|
||||
Tell me what thy lordly name is on the Night’s Plutonian shore!”
|
||||
Quoth the Raven “Nevermore.”
|
||||
|
||||
Much I marvelled this ungainly fowl to hear discourse so plainly,
|
||||
Though its answer little meaning—little relevancy bore;
|
||||
For we cannot help agreeing that no living human being
|
||||
Ever yet was blessed with seeing bird above his chamber door—
|
||||
Bird or beast upon the sculptured bust above his chamber door,
|
||||
With such name as “Nevermore.”
|
||||
|
||||
But the Raven, sitting lonely on the placid bust, spoke only
|
||||
That one word, as if his soul in that one word he did outpour.
|
||||
Nothing farther then he uttered—not a feather then he fluttered—
|
||||
Till I scarcely more than muttered “Other friends have flown before—
|
||||
On the morrow he will leave me, as my Hopes have flown before.”
|
||||
Then the bird said “Nevermore.”
|
||||
|
||||
Startled at the stillness broken by reply so aptly spoken,
|
||||
“Doubtless,” said I, “what it utters is its only stock and store
|
||||
Caught from some unhappy master whom unmerciful Disaster
|
||||
Followed fast and followed faster till his songs one burden bore—
|
||||
Till the dirges of his Hope that melancholy burden bore
|
||||
Of ‘Never—nevermore’.”
|
||||
|
||||
But the Raven still beguiling all my fancy into smiling,
|
||||
Straight I wheeled a cushioned seat in front of bird, and bust and door;
|
||||
Then, upon the velvet sinking, I betook myself to linking
|
||||
Fancy unto fancy, thinking what this ominous bird of yore—
|
||||
What this grim, ungainly, ghastly, gaunt, and ominous bird of yore
|
||||
Meant in croaking “Nevermore.”
|
||||
|
||||
This I sat engaged in guessing, but no syllable expressing
|
||||
To the fowl whose fiery eyes now burned into my bosom’s core;
|
||||
This and more I sat divining, with my head at ease reclining
|
||||
On the cushion’s velvet lining that the lamp-light gloated o’er,
|
||||
But whose velvet-violet lining with the lamp-light gloating o’er,
|
||||
She shall press, ah, nevermore!
|
||||
|
||||
Then, methought, the air grew denser, perfumed from an unseen censer
|
||||
Swung by Seraphim whose foot-falls tinkled on the tufted floor.
|
||||
“Wretch,” I cried, “thy God hath lent thee—by these angels he hath sent thee
|
||||
Respite—respite and nepenthe from thy memories of Lenore;
|
||||
Quaff, oh quaff this kind nepenthe and forget this lost Lenore!”
|
||||
Quoth the Raven “Nevermore.”
|
||||
|
||||
“Prophet!” said I, “thing of evil!—prophet still, if bird or devil!—
|
||||
Whether Tempter sent, or whether tempest tossed thee here ashore,
|
||||
Desolate yet all undaunted, on this desert land enchanted—
|
||||
On this home by Horror haunted—tell me truly, I implore—
|
||||
Is there—is there balm in Gilead?—tell me—tell me, I implore!”
|
||||
Quoth the Raven “Nevermore.”
|
||||
|
||||
“Prophet!” said I, “thing of evil!—prophet still, if bird or devil!
|
||||
By that Heaven that bends above us—by that God we both adore—
|
||||
Tell this soul with sorrow laden if, within the distant Aidenn,
|
||||
It shall clasp a sainted maiden whom the angels name Lenore—
|
||||
Clasp a rare and radiant maiden whom the angels name Lenore.”
|
||||
Quoth the Raven “Nevermore.”
|
||||
|
||||
“Be that word our sign of parting, bird or fiend!” I shrieked, upstarting—
|
||||
“Get thee back into the tempest and the Night’s Plutonian shore!
|
||||
Leave no black plume as a token of that lie thy soul hath spoken!
|
||||
Leave my loneliness unbroken!—quit the bust above my door!
|
||||
Take thy beak from out my heart, and take thy form from off my door!”
|
||||
Quoth the Raven “Nevermore.”
|
||||
|
||||
And the Raven, never flitting, still is sitting, still is sitting
|
||||
On the pallid bust of Pallas just above my chamber door;
|
||||
And his eyes have all the seeming of a demon’s that is dreaming,
|
||||
And the lamp-light o’er him streaming throws his shadow on the floor;
|
||||
And my soul from out that shadow that lies floating on the floor
|
||||
Shall be lifted—nevermore!
|
|
@ -1 +0,0 @@
|
|||
theodorfontane
|
|
@ -1,48 +0,0 @@
|
|||
Herr von Ribbeck auf Ribbeck im Havelland,
|
||||
Ein Birnbaum in seinem Garten stand,
|
||||
Und kam die goldene Herbsteszeit
|
||||
|
||||
Und die Birnen leuchteten weit und breit,
|
||||
Da stopfte, wenn's Mittag vom Turme scholl,
|
||||
Der von Ribbeck sich beide Taschen voll,
|
||||
Und kam in Pantinen ein Junge daher,
|
||||
So rief er: "Junge, wiste 'ne Beer?"
|
||||
Und kam ein Maedel, so rief er: "Luett Dirn,
|
||||
Kumm man roewer, ick hebb 'ne Birn."
|
||||
|
||||
So ging es viel Jahre, bis lobesam
|
||||
Der von Ribbeck auf Ribbeck zu sterben kam.
|
||||
|
||||
Er fuehlte sein Ende. 's war Herbsteszeit,
|
||||
Wieder lachten die Birnen weit und breit;
|
||||
Da sagte von Ribbeck: "Ich scheide nun ab.
|
||||
Legt mir eine Birne mit ins Grab."
|
||||
Und drei Tage drauf, aus dem Doppeldachhaus,
|
||||
Trugen von Ribbeck sie hinaus,
|
||||
Alle Bauern und Buedner mit Feiergesicht
|
||||
Sangen "Jesus meine Zuversicht",
|
||||
Und die Kinder klagten, das Herze schwer:
|
||||
"He is dod nu. Wer giwt uns nu 'ne Beer?"
|
||||
|
||||
So klagten die Kinder. Das war nicht recht -
|
||||
Ach, sie kannten den alten Ribbeck schlecht;
|
||||
Der neue freilich, der knausert und spart,
|
||||
Haelt Park und Birnbaum strenge verwahrt.
|
||||
Aber der alte, vorahnend schon
|
||||
Und voll Misstraun gegen den eigenen Sohn,
|
||||
Der wusste genau, was damals er tat,
|
||||
Als um eine Birn' ins Grab er bat,
|
||||
Und im dritten Jahr aus dem stillen Haus
|
||||
Ein Birnbaumsproessling sprosst heraus.
|
||||
|
||||
Und die Jahre gingen wohl auf und ab,
|
||||
Laengst woelbt sich ein Birnbaum ueber dem Grab,
|
||||
Und in der goldenen Herbsteszeit
|
||||
Leuchtet's wieder weit und breit.
|
||||
Und kommt ein Jung' uebern Kirchhof her,
|
||||
So fluestert's im Baume: "Wiste 'ne Beer?"
|
||||
Und kommt ein Maedel, so fluestert's: "Luett Dirn,
|
||||
Kumm man roewer, ick gew' di 'ne Birn."
|
||||
|
||||
So spendet Segen noch immer die Hand
|
||||
Des von Ribbeck auf Ribbeck im Havelland.
|
|
@ -1,23 +0,0 @@
|
|||
Two roads diverged in a yellow wood,
|
||||
And sorry I could not travel both
|
||||
And be one traveler, long I stood
|
||||
And looked down one as far as I could
|
||||
To where it bent in the undergrowth;
|
||||
|
||||
Then took the other, as just as fair,
|
||||
And having perhaps the better claim,
|
||||
Because it was grassy and wanted wear;
|
||||
Though as for that the passing there
|
||||
Had worn them really about the same,
|
||||
|
||||
And both that morning equally lay
|
||||
In leaves no step had trodden black.
|
||||
Oh, I kept the first for another day!
|
||||
Yet knowing how way leads on to way,
|
||||
I doubted if I should ever come back.
|
||||
|
||||
I shall be telling this with a sigh
|
||||
Somewhere ages and ages hence:
|
||||
Two roads diverged in a wood, and I—
|
||||
I took the one less traveled by,
|
||||
And that has made all the difference.
|
|
@ -1 +0,0 @@
|
|||
MEINSCHATZ
|
|
@ -1 +0,0 @@
|
|||
In einem Loch im Boden, da lebte ein Hobbit. Nicht in einem feuchten, schmutzigen Loch, wo es nach Moder riecht und Wurmzipfel von den Waenden herabhaengen, und auch nicht in einer trockenen, kahlen Sandgrube ohne Tische und Stuehle, wo man sich zum Essen hinsetzen koennte: nein, das Loch war eine Hobbithoehle, und das heisst, es war sehr komfortabel.
|
|
@ -1 +0,0 @@
|
|||
paradox
|
|
@ -1,19 +0,0 @@
|
|||
Dunkel war’s, der Mond schien helle,
|
||||
schneebedeckt die gruene Flur,
|
||||
als ein Wagen blitzesschnelle,
|
||||
langsam um die Ecke fuhr.
|
||||
|
||||
Drinnen sassen stehend Leute,
|
||||
schweigend ins Gespraech vertieft,
|
||||
als ein totgeschoss’ner Hase
|
||||
auf der Sandbank Schlittschuh lief.
|
||||
|
||||
Und ein blondgelockter Juengling
|
||||
mit kohlrabenschwarzem Haar
|
||||
sass auf einer gruenen Kiste,
|
||||
die rot angestrichen war.
|
||||
|
||||
Neben ihm ’ne alte Schrulle,
|
||||
zaehlte kaum erst sechzehn Jahr,
|
||||
in der Hand ’ne Butterstulle,
|
||||
die mit Schmalz bestrichen war.
|
|
@ -1,5 +0,0 @@
|
|||
\texttt{YNCJHFUGVBAVFYXIZBSRJCZGPBFCVTSUGGKWPWUHZCRFHYKFSOJCPGMMRBVUJFBWMWRJWEJIZGGLZGLHTUOFWQFCCXIUCOGTESSLKRFSLNTCME
|
||||
IKCOAJISAMGVBLBSKVWNSUSJZWFKLAYYSFMTFYLAJFHZXWRGBNXKOKYFZFSGIYONBSXDWKMRDKMMVPWMYVFUEFZATXHRIKXNKKSLLIOKLDRBVP
|
||||
FEHWWBVOJMMFIYAFJTGKYYOLMMVDSLXZBYMMVFWSGISCLAYYOLFTIBAGLVEMTQCMDTDZBDXFMSKGTJHWIMRRLKTURWGGCOUDTYWCXUKHZXKZFK
|
||||
MKFFSGTKVWKIRMQXYBBGPNEUZHBNOQEJRRKHSKCOTDZRGNGKSVBKZGZHZCRWOJIQGFJSOUDNJVSEQSSLXQCWFZYYWKPNKVSLNXVKHRVKZXWVOY
|
||||
XXRBVTLVGZXSTSLPTICSWXUWNXWXSVBSRKGHIRBVBNKCGDYYSGGJCSKLYIONXQVRTRFERLAFKVSLRRRWTQCHZXIZTXXWVBUX}
|
|
@ -1,5 +0,0 @@
|
|||
\texttt{\textcolor{red}{Y}\textcolor{blue}{N}\textcolor{darkgreen}{C}\textcolor{orange}{J}\textcolor{red}{H}\textcolor{blue}{F}\textcolor{darkgreen}{U}\textcolor{orange}{G}\textcolor{red}{V}\textcolor{blue}{B}\textcolor{darkgreen}{A}\textcolor{orange}{V}\textcolor{red}{F}\textcolor{blue}{Y}\textcolor{darkgreen}{X}\textcolor{orange}{I}\textcolor{red}{Z}\textcolor{blue}{B}\textcolor{darkgreen}{S}\textcolor{orange}{R}\textcolor{red}{J}\textcolor{blue}{C}\textcolor{darkgreen}{Z}\textcolor{orange}{G}\textcolor{red}{P}\textcolor{blue}{B}\textcolor{darkgreen}{F}\textcolor{orange}{C}\textcolor{red}{V}\textcolor{blue}{T}\textcolor{darkgreen}{S}\textcolor{orange}{U}\textcolor{red}{G}\textcolor{blue}{G}\textcolor{darkgreen}{K}\textcolor{orange}{W}\textcolor{red}{P}\textcolor{blue}{W}\textcolor{darkgreen}{U}\textcolor{orange}{H}\textcolor{red}{Z}\textcolor{blue}{C}\textcolor{darkgreen}{R}\textcolor{orange}{F}\textcolor{red}{H}\textcolor{blue}{Y}\textcolor{darkgreen}{K}\textcolor{orange}{F}\textcolor{red}{S}\textcolor{blue}{O}\textcolor{darkgreen}{J}\textcolor{orange}{C}\textcolor{red}{P}\textcolor{blue}{G}\textcolor{darkgreen}{M}\textcolor{orange}{M}\textcolor{red}{R}\textcolor{blue}{B}\textcolor{darkgreen}{V}\textcolor{orange}{U}\textcolor{red}{J}\textcolor{blue}{F}\textcolor{darkgreen}{B}\textcolor{orange}{W}\textcolor{red}{M}\textcolor{blue}{W}\textcolor{darkgreen}{R}\textcolor{orange}{J}\textcolor{red}{W}\textcolor{blue}{E}\textcolor{darkgreen}{J}\textcolor{orange}{I}\textcolor{red}{Z}\textcolor{blue}{G}\textcolor{darkgreen}{G}\textcolor{orange}{L}\textcolor{red}{Z}\textcolor{blue}{G}\textcolor{darkgreen}{L}\textcolor{orange}{H}\textcolor{red}{T}\textcolor{blue}{U}\textcolor{darkgreen}{O}\textcolor{orange}{F}\textcolor{red}{W}\textcolor{blue}{Q}\textcolor{darkgreen}{F}\textcolor{orange}{C}\textcolor{red}{C}\textcolor{blue}{X}\textcolor{darkgreen}{I}\textcolor{orange}{U}\textcolor{red}{C}\textcolor{blue}{O}\textcolor{darkgreen}{G}\textcolor{orange}{T}\textcolor{red}{E}\textcolor{blue}{S}\textcolor{darkgreen}{S}\textcolor{orange}{L}\textcolor{red}{K}\textcolor{blue}{R}\textcolor{darkgreen}{F}\textcolor{orange}{S}\textcolor{red}{L}\textcolor{blue}{N}\textcolor{darkgreen}{T}\textcolor{orange}{C}\textcolor{red}{M}\textcolor{blue}{E}
|
||||
\textcolor{darkgreen}{I}\textcolor{orange}{K}\textcolor{red}{C}\textcolor{blue}{O}\textcolor{darkgreen}{A}\textcolor{orange}{J}\textcolor{red}{I}\textcolor{blue}{S}\textcolor{darkgreen}{A}\textcolor{orange}{M}\textcolor{red}{G}\textcolor{blue}{V}\textcolor{darkgreen}{B}\textcolor{orange}{L}\textcolor{red}{B}\textcolor{blue}{S}\textcolor{darkgreen}{K}\textcolor{orange}{V}\textcolor{red}{W}\textcolor{blue}{N}\textcolor{darkgreen}{S}\textcolor{orange}{U}\textcolor{red}{S}\textcolor{blue}{J}\textcolor{darkgreen}{Z}\textcolor{orange}{W}\textcolor{red}{F}\textcolor{blue}{K}\textcolor{darkgreen}{L}\textcolor{orange}{A}\textcolor{red}{Y}\textcolor{blue}{Y}\textcolor{darkgreen}{S}\textcolor{orange}{F}\textcolor{red}{M}\textcolor{blue}{T}\textcolor{darkgreen}{F}\textcolor{orange}{Y}\textcolor{red}{L}\textcolor{blue}{A}\textcolor{darkgreen}{J}\textcolor{orange}{F}\textcolor{red}{H}\textcolor{blue}{Z}\textcolor{darkgreen}{X}\textcolor{orange}{W}\textcolor{red}{R}\textcolor{blue}{G}\textcolor{darkgreen}{B}\textcolor{orange}{N}\textcolor{red}{X}\textcolor{blue}{K}\textcolor{darkgreen}{O}\textcolor{orange}{K}\textcolor{red}{Y}\textcolor{blue}{F}\textcolor{darkgreen}{Z}\textcolor{orange}{F}\textcolor{red}{S}\textcolor{blue}{G}\textcolor{darkgreen}{I}\textcolor{orange}{Y}\textcolor{red}{O}\textcolor{blue}{N}\textcolor{darkgreen}{B}\textcolor{orange}{S}\textcolor{red}{X}\textcolor{blue}{D}\textcolor{darkgreen}{W}\textcolor{orange}{K}\textcolor{red}{M}\textcolor{blue}{R}\textcolor{darkgreen}{D}\textcolor{orange}{K}\textcolor{red}{M}\textcolor{blue}{M}\textcolor{darkgreen}{V}\textcolor{orange}{P}\textcolor{red}{W}\textcolor{blue}{M}\textcolor{darkgreen}{Y}\textcolor{orange}{V}\textcolor{red}{F}\textcolor{blue}{U}\textcolor{darkgreen}{E}\textcolor{orange}{F}\textcolor{red}{Z}\textcolor{blue}{A}\textcolor{darkgreen}{T}\textcolor{orange}{X}\textcolor{red}{H}\textcolor{blue}{R}\textcolor{darkgreen}{I}\textcolor{orange}{K}\textcolor{red}{X}\textcolor{blue}{N}\textcolor{darkgreen}{K}\textcolor{orange}{K}\textcolor{red}{S}\textcolor{blue}{L}\textcolor{darkgreen}{L}\textcolor{orange}{I}\textcolor{red}{O}\textcolor{blue}{K}\textcolor{darkgreen}{L}\textcolor{orange}{D}\textcolor{red}{R}\textcolor{blue}{B}\textcolor{darkgreen}{V}\textcolor{orange}{P}
|
||||
\textcolor{red}{F}\textcolor{blue}{E}\textcolor{darkgreen}{H}\textcolor{orange}{W}\textcolor{red}{W}\textcolor{blue}{B}\textcolor{darkgreen}{V}\textcolor{orange}{O}\textcolor{red}{J}\textcolor{blue}{M}\textcolor{darkgreen}{M}\textcolor{orange}{F}\textcolor{red}{I}\textcolor{blue}{Y}\textcolor{darkgreen}{A}\textcolor{orange}{F}\textcolor{red}{J}\textcolor{blue}{T}\textcolor{darkgreen}{G}\textcolor{orange}{K}\textcolor{red}{Y}\textcolor{blue}{Y}\textcolor{darkgreen}{O}\textcolor{orange}{L}\textcolor{red}{M}\textcolor{blue}{M}\textcolor{darkgreen}{V}\textcolor{orange}{D}\textcolor{red}{S}\textcolor{blue}{L}\textcolor{darkgreen}{X}\textcolor{orange}{Z}\textcolor{red}{B}\textcolor{blue}{Y}\textcolor{darkgreen}{M}\textcolor{orange}{M}\textcolor{red}{V}\textcolor{blue}{F}\textcolor{darkgreen}{W}\textcolor{orange}{S}\textcolor{red}{G}\textcolor{blue}{I}\textcolor{darkgreen}{S}\textcolor{orange}{C}\textcolor{red}{L}\textcolor{blue}{A}\textcolor{darkgreen}{Y}\textcolor{orange}{Y}\textcolor{red}{O}\textcolor{blue}{L}\textcolor{darkgreen}{F}\textcolor{orange}{T}\textcolor{red}{I}\textcolor{blue}{B}\textcolor{darkgreen}{A}\textcolor{orange}{G}\textcolor{red}{L}\textcolor{blue}{V}\textcolor{darkgreen}{E}\textcolor{orange}{M}\textcolor{red}{T}\textcolor{blue}{Q}\textcolor{darkgreen}{C}\textcolor{orange}{M}\textcolor{red}{D}\textcolor{blue}{T}\textcolor{darkgreen}{D}\textcolor{orange}{Z}\textcolor{red}{B}\textcolor{blue}{D}\textcolor{darkgreen}{X}\textcolor{orange}{F}\textcolor{red}{M}\textcolor{blue}{S}\textcolor{darkgreen}{K}\textcolor{orange}{G}\textcolor{red}{T}\textcolor{blue}{J}\textcolor{darkgreen}{H}\textcolor{orange}{W}\textcolor{red}{I}\textcolor{blue}{M}\textcolor{darkgreen}{R}\textcolor{orange}{R}\textcolor{red}{L}\textcolor{blue}{K}\textcolor{darkgreen}{T}\textcolor{orange}{U}\textcolor{red}{R}\textcolor{blue}{W}\textcolor{darkgreen}{G}\textcolor{orange}{G}\textcolor{red}{C}\textcolor{blue}{O}\textcolor{darkgreen}{U}\textcolor{orange}{D}\textcolor{red}{T}\textcolor{blue}{Y}\textcolor{darkgreen}{W}\textcolor{orange}{C}\textcolor{red}{X}\textcolor{blue}{U}\textcolor{darkgreen}{K}\textcolor{orange}{H}\textcolor{red}{Z}\textcolor{blue}{X}\textcolor{darkgreen}{K}\textcolor{orange}{Z}\textcolor{red}{F}\textcolor{blue}{K}
|
||||
\textcolor{darkgreen}{M}\textcolor{orange}{K}\textcolor{red}{F}\textcolor{blue}{F}\textcolor{darkgreen}{S}\textcolor{orange}{G}\textcolor{red}{T}\textcolor{blue}{K}\textcolor{darkgreen}{V}\textcolor{orange}{W}\textcolor{red}{K}\textcolor{blue}{I}\textcolor{darkgreen}{R}\textcolor{orange}{M}\textcolor{red}{Q}\textcolor{blue}{X}\textcolor{darkgreen}{Y}\textcolor{orange}{B}\textcolor{red}{B}\textcolor{blue}{G}\textcolor{darkgreen}{P}\textcolor{orange}{N}\textcolor{red}{E}\textcolor{blue}{U}\textcolor{darkgreen}{Z}\textcolor{orange}{H}\textcolor{red}{B}\textcolor{blue}{N}\textcolor{darkgreen}{O}\textcolor{orange}{Q}\textcolor{red}{E}\textcolor{blue}{J}\textcolor{darkgreen}{R}\textcolor{orange}{R}\textcolor{red}{K}\textcolor{blue}{H}\textcolor{darkgreen}{S}\textcolor{orange}{K}\textcolor{red}{C}\textcolor{blue}{O}\textcolor{darkgreen}{T}\textcolor{orange}{D}\textcolor{red}{Z}\textcolor{blue}{R}\textcolor{darkgreen}{G}\textcolor{orange}{N}\textcolor{red}{G}\textcolor{blue}{K}\textcolor{darkgreen}{S}\textcolor{orange}{V}\textcolor{red}{B}\textcolor{blue}{K}\textcolor{darkgreen}{Z}\textcolor{orange}{G}\textcolor{red}{Z}\textcolor{blue}{H}\textcolor{darkgreen}{Z}\textcolor{orange}{C}\textcolor{red}{R}\textcolor{blue}{W}\textcolor{darkgreen}{O}\textcolor{orange}{J}\textcolor{red}{I}\textcolor{blue}{Q}\textcolor{darkgreen}{G}\textcolor{orange}{F}\textcolor{red}{J}\textcolor{blue}{S}\textcolor{darkgreen}{O}\textcolor{orange}{U}\textcolor{red}{D}\textcolor{blue}{N}\textcolor{darkgreen}{J}\textcolor{orange}{V}\textcolor{red}{S}\textcolor{blue}{E}\textcolor{darkgreen}{Q}\textcolor{orange}{S}\textcolor{red}{S}\textcolor{blue}{L}\textcolor{darkgreen}{X}\textcolor{orange}{Q}\textcolor{red}{C}\textcolor{blue}{W}\textcolor{darkgreen}{F}\textcolor{orange}{Z}\textcolor{red}{Y}\textcolor{blue}{Y}\textcolor{darkgreen}{W}\textcolor{orange}{K}\textcolor{red}{P}\textcolor{blue}{N}\textcolor{darkgreen}{K}\textcolor{orange}{V}\textcolor{red}{S}\textcolor{blue}{L}\textcolor{darkgreen}{N}\textcolor{orange}{X}\textcolor{red}{V}\textcolor{blue}{K}\textcolor{darkgreen}{H}\textcolor{orange}{R}\textcolor{red}{V}\textcolor{blue}{K}\textcolor{darkgreen}{Z}\textcolor{orange}{X}\textcolor{red}{W}\textcolor{blue}{V}\textcolor{darkgreen}{O}\textcolor{orange}{Y}
|
||||
\textcolor{red}{X}\textcolor{blue}{X}\textcolor{darkgreen}{R}\textcolor{orange}{B}\textcolor{red}{V}\textcolor{blue}{T}\textcolor{darkgreen}{L}\textcolor{orange}{V}\textcolor{red}{G}\textcolor{blue}{Z}\textcolor{darkgreen}{X}\textcolor{orange}{S}\textcolor{red}{T}\textcolor{blue}{S}\textcolor{darkgreen}{L}\textcolor{orange}{P}\textcolor{red}{T}\textcolor{blue}{I}\textcolor{darkgreen}{C}\textcolor{orange}{S}\textcolor{red}{W}\textcolor{blue}{X}\textcolor{darkgreen}{U}\textcolor{orange}{W}\textcolor{red}{N}\textcolor{blue}{X}\textcolor{darkgreen}{W}\textcolor{orange}{X}\textcolor{red}{S}\textcolor{blue}{V}\textcolor{darkgreen}{B}\textcolor{orange}{S}\textcolor{red}{R}\textcolor{blue}{K}\textcolor{darkgreen}{G}\textcolor{orange}{H}\textcolor{red}{I}\textcolor{blue}{R}\textcolor{darkgreen}{B}\textcolor{orange}{V}\textcolor{red}{B}\textcolor{blue}{N}\textcolor{darkgreen}{K}\textcolor{orange}{C}\textcolor{red}{G}\textcolor{blue}{D}\textcolor{darkgreen}{Y}\textcolor{orange}{Y}\textcolor{red}{S}\textcolor{blue}{G}\textcolor{darkgreen}{G}\textcolor{orange}{J}\textcolor{red}{C}\textcolor{blue}{S}\textcolor{darkgreen}{K}\textcolor{orange}{L}\textcolor{red}{Y}\textcolor{blue}{I}\textcolor{darkgreen}{O}\textcolor{orange}{N}\textcolor{red}{X}\textcolor{blue}{Q}\textcolor{darkgreen}{V}\textcolor{orange}{R}\textcolor{red}{T}\textcolor{blue}{R}\textcolor{darkgreen}{F}\textcolor{orange}{E}\textcolor{red}{R}\textcolor{blue}{L}\textcolor{darkgreen}{A}\textcolor{orange}{F}\textcolor{red}{K}\textcolor{blue}{V}\textcolor{darkgreen}{S}\textcolor{orange}{L}\textcolor{red}{R}\textcolor{blue}{R}\textcolor{darkgreen}{R}\textcolor{orange}{W}\textcolor{red}{T}\textcolor{blue}{Q}\textcolor{darkgreen}{C}\textcolor{orange}{H}\textcolor{red}{Z}\textcolor{blue}{X}\textcolor{darkgreen}{I}\textcolor{orange}{Z}\textcolor{red}{T}\textcolor{blue}{X}\textcolor{darkgreen}{X}\textcolor{orange}{W}\textcolor{red}{V}\textcolor{blue}{B}\textcolor{darkgreen}{U}\textcolor{orange}{X}}
|
|
@ -1,7 +0,0 @@
|
|||
\texttt{\textcolor{blue}{NFBYBCBTGWCYOGBFWEGG
|
||||
UQXOSRNEOSVSNJKYTAZG
|
||||
KFGNDRMMUARNLKBEBMYT
|
||||
YMLYFIALBVQTDSJMKWOY
|
||||
UXKFKIXGUNJHORKKHWQS
|
||||
NELWYNLKKVXTZSIXXVKR
|
||||
NDGSIQRLVRQXXB}}
|
|
@ -1,7 +0,0 @@
|
|||
\texttt{\textcolor{darkgreen}{CUAXSZFSKURKJMVBRJGL
|
||||
OFIGSFTIAABKSZLSFJXB
|
||||
OZIBWDVYETIKLLVHVMAG
|
||||
OVXMWSYFAECDXKHRTGUW
|
||||
KKMSVRYPZORSTGSZZOGO
|
||||
JQXFWKNHZORLXLCUWBGB
|
||||
KYGKOVFASRCIXU}}
|
|
@ -1,7 +0,0 @@
|
|||
\texttt{\textcolor{orange}{JGVIRGCUWHFFCMUWJILH
|
||||
FCUTLSCKJMLVUWAFYFWN
|
||||
KFYSKKPVFXKKIDPWOFFK
|
||||
LDZMSCYTGMMZFGWRUGDC
|
||||
HZKGWMBNHQRKDNVGCJFU
|
||||
VSQZKVXRXYBVSPSWXSHV
|
||||
CYJLNREFLWHZWX}}
|
|
@ -1,7 +0,0 @@
|
|||
\texttt{\textcolor{red}{YHVFZJPVGPZHSPRJMWZZ
|
||||
TWCCEKLMCIGBWSFYMLHR
|
||||
XYSOXMMWFZHXSORFWJIJ
|
||||
YMSBVGLOILTDBMTILRCT
|
||||
XZFFTKQBEBEKCZGBZRIJ
|
||||
DSSCYPSVVWXVGTTWNSRI
|
||||
BGSCYXTRKRTZTV}}
|
|
@ -1,5 +0,0 @@
|
|||
\texttt{\textcolor{red}{Y}\textcolor{blue}{N}\textcolor{darkgreen}{C}\textcolor{orange}{J}\textcolor{red}{H}\textcolor{blue}{F}\textcolor{darkgreen}{U}\textcolor{orange}{G}\textcolor{red}{V}\textcolor{blue}{B}\textcolor{darkgreen}{A}\textcolor{orange}{V}\textcolor{red}{F}\textcolor{blue}{Y}\textcolor{darkgreen}{X}\textcolor{orange}{I}\textcolor{red}{Z}\textcolor{blue}{B}\textcolor{darkgreen}{S}\textcolor{orange}{R}\textcolor{red}{J}\textcolor{blue}{C}\textcolor{darkgreen}{Z}\textcolor{orange}{G}\textcolor{red}{P}\textcolor{blue}{B}\textcolor{darkgreen}{F}\textcolor{orange}{C}\textcolor{red}{V}\textcolor{blue}{T}\textcolor{darkgreen}{S}\textcolor{orange}{U}\textcolor{red}{G}\textcolor{blue}{G}\textcolor{darkgreen}{K}\textcolor{orange}{W}\textcolor{red}{P}\textcolor{blue}{W}\textcolor{darkgreen}{U}\textcolor{orange}{H}\textcolor{red}{Z}\textcolor{blue}{C}\textcolor{darkgreen}{R}\textcolor{orange}{F}\textcolor{red}{H}\textcolor{blue}{Y}\textcolor{darkgreen}{K}\textcolor{orange}{F}\textcolor{red}{S}\textcolor{blue}{O}\textcolor{darkgreen}{J}\textcolor{orange}{C}\textcolor{red}{P}\textcolor{blue}{G}\textcolor{darkgreen}{M}\textcolor{orange}{M}\textcolor{red}{R}\textcolor{blue}{B}\textcolor{darkgreen}{V}\textcolor{orange}{U}\textcolor{red}{J}\textcolor{blue}{F}\textcolor{darkgreen}{B}\textcolor{orange}{W}\textcolor{red}{M}\textcolor{blue}{W}\textcolor{darkgreen}{R}\textcolor{orange}{J}\textcolor{red}{W}\textcolor{blue}{E}\textcolor{darkgreen}{J}\textcolor{orange}{I}\textcolor{red}{Z}\textcolor{blue}{G}\textcolor{darkgreen}{G}\textcolor{orange}{L}\textcolor{red}{Z}\textcolor{blue}{G}\textcolor{darkgreen}{L}\textcolor{orange}{H}\textcolor{red}{T}\textcolor{blue}{U}\textcolor{darkgreen}{O}\textcolor{orange}{F}\textcolor{red}{W}\textcolor{blue}{Q}\textcolor{darkgreen}{F}\textcolor{orange}{C}\textcolor{red}{C}\textcolor{blue}{X}\textcolor{darkgreen}{I}\textcolor{orange}{U}\textcolor{red}{C}\textcolor{blue}{O}\textcolor{darkgreen}{G}\textcolor{orange}{T}\textcolor{red}{E}\textcolor{blue}{S}\textcolor{darkgreen}{S}\textcolor{orange}{L}\textcolor{red}{K}\textcolor{blue}{R}\textcolor{darkgreen}{F}\textcolor{orange}{S}\textcolor{red}{L}\textcolor{blue}{N}\textcolor{darkgreen}{T}\textcolor{orange}{C}\textcolor{red}{M}\textcolor{blue}{E}
|
||||
\textcolor{darkgreen}{I}\textcolor{orange}{K}\textcolor{red}{C}\textcolor{blue}{O}\textcolor{darkgreen}{A}\textcolor{orange}{J}\textcolor{red}{I}\textcolor{blue}{S}\textcolor{darkgreen}{A}\textcolor{orange}{M}\textcolor{red}{G}\textcolor{blue}{V}\textcolor{darkgreen}{B}\textcolor{orange}{L}\textcolor{red}{B}\textcolor{blue}{S}\textcolor{darkgreen}{K}\textcolor{orange}{V}\textcolor{red}{W}\textcolor{blue}{N}\textcolor{darkgreen}{S}\textcolor{orange}{U}\textcolor{red}{S}\textcolor{blue}{J}\textcolor{darkgreen}{Z}\textcolor{orange}{W}\textcolor{red}{F}\textcolor{blue}{K}\textcolor{darkgreen}{L}\textcolor{orange}{A}\textcolor{red}{Y}\textcolor{blue}{Y}\textcolor{darkgreen}{S}\textcolor{orange}{F}\textcolor{red}{M}\textcolor{blue}{T}\textcolor{darkgreen}{F}\textcolor{orange}{Y}\textcolor{red}{L}\textcolor{blue}{A}\textcolor{darkgreen}{J}\textcolor{orange}{F}\textcolor{red}{H}\textcolor{blue}{Z}\textcolor{darkgreen}{X}\textcolor{orange}{W}\textcolor{red}{R}\textcolor{blue}{G}\textcolor{darkgreen}{B}\textcolor{orange}{N}\textcolor{red}{X}\textcolor{blue}{K}\textcolor{darkgreen}{O}\textcolor{orange}{K}\textcolor{red}{Y}\textcolor{blue}{F}\textcolor{darkgreen}{Z}\textcolor{orange}{F}\textcolor{red}{S}\textcolor{blue}{G}\textcolor{darkgreen}{I}\textcolor{orange}{Y}\textcolor{red}{O}\textcolor{blue}{N}\textcolor{darkgreen}{B}\textcolor{orange}{S}\textcolor{red}{X}\textcolor{blue}{D}\textcolor{darkgreen}{W}\textcolor{orange}{K}\textcolor{red}{M}\textcolor{blue}{R}\textcolor{darkgreen}{D}\textcolor{orange}{K}\textcolor{red}{M}\textcolor{blue}{M}\textcolor{darkgreen}{V}\textcolor{orange}{P}\textcolor{red}{W}\textcolor{blue}{M}\textcolor{darkgreen}{Y}\textcolor{orange}{V}\textcolor{red}{F}\textcolor{blue}{U}\textcolor{darkgreen}{E}\textcolor{orange}{F}\textcolor{red}{Z}\textcolor{blue}{A}\textcolor{darkgreen}{T}\textcolor{orange}{X}\textcolor{red}{H}\textcolor{blue}{R}\textcolor{darkgreen}{I}\textcolor{orange}{K}\textcolor{red}{X}\textcolor{blue}{N}\textcolor{darkgreen}{K}\textcolor{orange}{K}\textcolor{red}{S}\textcolor{blue}{L}\textcolor{darkgreen}{L}\textcolor{orange}{I}\textcolor{red}{O}\textcolor{blue}{K}\textcolor{darkgreen}{L}\textcolor{orange}{D}\textcolor{red}{R}\textcolor{blue}{B}\textcolor{darkgreen}{V}\textcolor{orange}{P}
|
||||
\textcolor{red}{F}\textcolor{blue}{E}\textcolor{darkgreen}{H}\textcolor{orange}{W}\textcolor{red}{W}\textcolor{blue}{B}\textcolor{darkgreen}{V}\textcolor{orange}{O}\textcolor{red}{J}\textcolor{blue}{M}\textcolor{darkgreen}{M}\textcolor{orange}{F}\textcolor{red}{I}\textcolor{blue}{Y}\textcolor{darkgreen}{A}\textcolor{orange}{F}\textcolor{red}{J}\textcolor{blue}{T}\textcolor{darkgreen}{G}\textcolor{orange}{K}\textcolor{red}{Y}\textcolor{blue}{Y}\textcolor{darkgreen}{O}\textcolor{orange}{L}\textcolor{red}{M}\textcolor{blue}{M}\textcolor{darkgreen}{V}\textcolor{orange}{D}\textcolor{red}{S}\textcolor{blue}{L}\textcolor{darkgreen}{X}\textcolor{orange}{Z}\textcolor{red}{B}\textcolor{blue}{Y}\textcolor{darkgreen}{M}\textcolor{orange}{M}\textcolor{red}{V}\textcolor{blue}{F}\textcolor{darkgreen}{W}\textcolor{orange}{S}\textcolor{red}{G}\textcolor{blue}{I}\textcolor{darkgreen}{S}\textcolor{orange}{C}\textcolor{red}{L}\textcolor{blue}{A}\textcolor{darkgreen}{Y}\textcolor{orange}{Y}\textcolor{red}{O}\textcolor{blue}{L}\textcolor{darkgreen}{F}\textcolor{orange}{T}\textcolor{red}{I}\textcolor{blue}{B}\textcolor{darkgreen}{A}\textcolor{orange}{G}\textcolor{red}{L}\textcolor{blue}{V}\textcolor{darkgreen}{E}\textcolor{orange}{M}\textcolor{red}{T}\textcolor{blue}{Q}\textcolor{darkgreen}{C}\textcolor{orange}{M}\textcolor{red}{D}\textcolor{blue}{T}\textcolor{darkgreen}{D}\textcolor{orange}{Z}\textcolor{red}{B}\textcolor{blue}{D}\textcolor{darkgreen}{X}\textcolor{orange}{F}\textcolor{red}{M}\textcolor{blue}{S}\textcolor{darkgreen}{K}\textcolor{orange}{G}\textcolor{red}{T}\textcolor{blue}{J}\textcolor{darkgreen}{H}\textcolor{orange}{W}\textcolor{red}{I}\textcolor{blue}{M}\textcolor{darkgreen}{R}\textcolor{orange}{R}\textcolor{red}{L}\textcolor{blue}{K}\textcolor{darkgreen}{T}\textcolor{orange}{U}\textcolor{red}{R}\textcolor{blue}{W}\textcolor{darkgreen}{G}\textcolor{orange}{G}\textcolor{red}{C}\textcolor{blue}{O}\textcolor{darkgreen}{U}\textcolor{orange}{D}\textcolor{red}{T}\textcolor{blue}{Y}\textcolor{darkgreen}{W}\textcolor{orange}{C}\textcolor{red}{X}\textcolor{blue}{U}\textcolor{darkgreen}{K}\textcolor{orange}{H}\textcolor{red}{Z}\textcolor{blue}{X}\textcolor{darkgreen}{K}\textcolor{orange}{Z}\textcolor{red}{F}\textcolor{blue}{K}
|
||||
\textcolor{darkgreen}{M}\textcolor{orange}{K}\textcolor{red}{F}\textcolor{blue}{F}\textcolor{darkgreen}{S}\textcolor{orange}{G}\textcolor{red}{T}\textcolor{blue}{K}\textcolor{darkgreen}{V}\textcolor{orange}{W}\textcolor{red}{K}\textcolor{blue}{I}\textcolor{darkgreen}{R}\textcolor{orange}{M}\textcolor{red}{Q}\textcolor{blue}{X}\textcolor{darkgreen}{Y}\textcolor{orange}{B}\textcolor{red}{B}\textcolor{blue}{G}\textcolor{darkgreen}{P}\textcolor{orange}{N}\textcolor{red}{E}\textcolor{blue}{U}\textcolor{darkgreen}{Z}\textcolor{orange}{H}\textcolor{red}{B}\textcolor{blue}{N}\textcolor{darkgreen}{O}\textcolor{orange}{Q}\textcolor{red}{E}\textcolor{blue}{J}\textcolor{darkgreen}{R}\textcolor{orange}{R}\textcolor{red}{K}\textcolor{blue}{H}\textcolor{darkgreen}{S}\textcolor{orange}{K}\textcolor{red}{C}\textcolor{blue}{O}\textcolor{darkgreen}{T}\textcolor{orange}{D}\textcolor{red}{Z}\textcolor{blue}{R}\textcolor{darkgreen}{G}\textcolor{orange}{N}\textcolor{red}{G}\textcolor{blue}{K}\textcolor{darkgreen}{S}\textcolor{orange}{V}\textcolor{red}{B}\textcolor{blue}{K}\textcolor{darkgreen}{Z}\textcolor{orange}{G}\textcolor{red}{Z}\textcolor{blue}{H}\textcolor{darkgreen}{Z}\textcolor{orange}{C}\textcolor{red}{R}\textcolor{blue}{W}\textcolor{darkgreen}{O}\textcolor{orange}{J}\textcolor{red}{I}\textcolor{blue}{Q}\textcolor{darkgreen}{G}\textcolor{orange}{F}\textcolor{red}{J}\textcolor{blue}{S}\textcolor{darkgreen}{O}\textcolor{orange}{U}\textcolor{red}{D}\textcolor{blue}{N}\textcolor{darkgreen}{J}\textcolor{orange}{V}\textcolor{red}{S}\textcolor{blue}{E}\textcolor{darkgreen}{Q}\textcolor{orange}{S}\textcolor{red}{S}\textcolor{blue}{L}\textcolor{darkgreen}{X}\textcolor{orange}{Q}\textcolor{red}{C}\textcolor{blue}{W}\textcolor{darkgreen}{F}\textcolor{orange}{Z}\textcolor{red}{Y}\textcolor{blue}{Y}\textcolor{darkgreen}{W}\textcolor{orange}{K}\textcolor{red}{P}\textcolor{blue}{N}\textcolor{darkgreen}{K}\textcolor{orange}{V}\textcolor{red}{S}\textcolor{blue}{L}\textcolor{darkgreen}{N}\textcolor{orange}{X}\textcolor{red}{V}\textcolor{blue}{K}\textcolor{darkgreen}{H}\textcolor{orange}{R}\textcolor{red}{V}\textcolor{blue}{K}\textcolor{darkgreen}{Z}\textcolor{orange}{X}\textcolor{red}{W}\textcolor{blue}{V}\textcolor{darkgreen}{O}\textcolor{orange}{Y}
|
||||
\textcolor{red}{X}\textcolor{blue}{X}\textcolor{darkgreen}{R}\textcolor{orange}{B}\textcolor{red}{V}\textcolor{blue}{T}\textcolor{darkgreen}{L}\textcolor{orange}{V}\textcolor{red}{G}\textcolor{blue}{Z}\textcolor{darkgreen}{X}\textcolor{orange}{S}\textcolor{red}{T}\textcolor{blue}{S}\textcolor{darkgreen}{L}\textcolor{orange}{P}\textcolor{red}{T}\textcolor{blue}{I}\textcolor{darkgreen}{C}\textcolor{orange}{S}\textcolor{red}{W}\textcolor{blue}{X}\textcolor{darkgreen}{U}\textcolor{orange}{W}\textcolor{red}{N}\textcolor{blue}{X}\textcolor{darkgreen}{W}\textcolor{orange}{X}\textcolor{red}{S}\textcolor{blue}{V}\textcolor{darkgreen}{B}\textcolor{orange}{S}\textcolor{red}{R}\textcolor{blue}{K}\textcolor{darkgreen}{G}\textcolor{orange}{H}\textcolor{red}{I}\textcolor{blue}{R}\textcolor{darkgreen}{B}\textcolor{orange}{V}\textcolor{red}{B}\textcolor{blue}{N}\textcolor{darkgreen}{K}\textcolor{orange}{C}\textcolor{red}{G}\textcolor{blue}{D}\textcolor{darkgreen}{Y}\textcolor{orange}{Y}\textcolor{red}{S}\textcolor{blue}{G}\textcolor{darkgreen}{G}\textcolor{orange}{J}\textcolor{red}{C}\textcolor{blue}{S}\textcolor{darkgreen}{K}\textcolor{orange}{L}\textcolor{red}{Y}\textcolor{blue}{I}\textcolor{darkgreen}{O}\textcolor{orange}{N}\textcolor{red}{X}\textcolor{blue}{Q}\textcolor{darkgreen}{V}\textcolor{orange}{R}\textcolor{red}{T}\textcolor{blue}{R}\textcolor{darkgreen}{F}\textcolor{orange}{E}\textcolor{red}{R}\textcolor{blue}{L}\textcolor{darkgreen}{A}\textcolor{orange}{F}\textcolor{red}{K}\textcolor{blue}{V}\textcolor{darkgreen}{S}\textcolor{orange}{L}\textcolor{red}{R}\textcolor{blue}{R}\textcolor{darkgreen}{R}\textcolor{orange}{W}\textcolor{red}{T}\textcolor{blue}{Q}\textcolor{darkgreen}{C}\textcolor{orange}{H}\textcolor{red}{Z}\textcolor{blue}{X}\textcolor{darkgreen}{I}\textcolor{orange}{Z}\textcolor{red}{T}\textcolor{blue}{X}\textcolor{darkgreen}{X}\textcolor{orange}{W}\textcolor{red}{V}\textcolor{blue}{B}\textcolor{darkgreen}{U}\textcolor{orange}{X}}
|
|
@ -1,7 +0,0 @@
|
|||
\texttt{\textcolor{blue}{NFBYBCBTGWCYOGBFWEGG
|
||||
UQXOSRNEOSVSNJKYTAZG
|
||||
KFGNDRMMUARNLKBEBMYT
|
||||
YMLYFIALBVQTDSJMKWOY
|
||||
UXKFKIXGUNJHORKKHWQS
|
||||
NELWYNLKKVXTZSIXXVKR
|
||||
NDGSIQRLVRQXXB}}\textcolor{blue}{$$\kappa_o = 0.0404$$}
|
|
@ -1,7 +0,0 @@
|
|||
\texttt{\textcolor{darkgreen}{CUAXSZFSKURKJMVBRJGL
|
||||
OFIGSFTIAABKSZLSFJXB
|
||||
OZIBWDVYETIKLLVHVMAG
|
||||
OVXMWSYFAECDXKHRTGUW
|
||||
KKMSVRYPZORSTGSZZOGO
|
||||
JQXFWKNHZORLXLCUWBGB
|
||||
KYGKOVFASRCIXU}}\textcolor{darkgreen}{$$\kappa_o = 0.0405$$}
|
|
@ -1,7 +0,0 @@
|
|||
\texttt{\textcolor{orange}{JGVIRGCUWHFFCMUWJILH
|
||||
FCUTLSCKJMLVUWAFYFWN
|
||||
KFYSKKPVFXKKIDPWOFFK
|
||||
LDZMSCYTGMMZFGWRUGDC
|
||||
HZKGWMBNHQRKDNVGCJFU
|
||||
VSQZKVXRXYBVSPSWXSHV
|
||||
CYJLNREFLWHZWX}}\textcolor{orange}{$$\kappa_o = 0.0432$$}
|
|
@ -1,7 +0,0 @@
|
|||
\texttt{\textcolor{red}{YHVFZJPVGPZHSPRJMWZZ
|
||||
TWCCEKLMCIGBWSFYMLHR
|
||||
XYSOXMMWFZHXSORFWJIJ
|
||||
YMSBVGLOILTDBMTILRCT
|
||||
XZFFTKQBEBEKCZGBZRIJ
|
||||
DSSCYPSVVWXVGTTWNSRI
|
||||
BGSCYXTRKRTZTV}}\textcolor{red}{$$\kappa_o = 0.0425$$}
|
|
@ -1,5 +0,0 @@
|
|||
\texttt{\textcolor{red}{Y}\textcolor{blue}{N}\textcolor{darkgreen}{C}\textcolor{orange}{J}\textcolor{black}{H}\textcolor{red}{F}\textcolor{blue}{U}\textcolor{darkgreen}{G}\textcolor{orange}{V}\textcolor{black}{B}\textcolor{red}{A}\textcolor{blue}{V}\textcolor{darkgreen}{F}\textcolor{orange}{Y}\textcolor{black}{X}\textcolor{red}{I}\textcolor{blue}{Z}\textcolor{darkgreen}{B}\textcolor{orange}{S}\textcolor{black}{R}\textcolor{red}{J}\textcolor{blue}{C}\textcolor{darkgreen}{Z}\textcolor{orange}{G}\textcolor{black}{P}\textcolor{red}{B}\textcolor{blue}{F}\textcolor{darkgreen}{C}\textcolor{orange}{V}\textcolor{black}{T}\textcolor{red}{S}\textcolor{blue}{U}\textcolor{darkgreen}{G}\textcolor{orange}{G}\textcolor{black}{K}\textcolor{red}{W}\textcolor{blue}{P}\textcolor{darkgreen}{W}\textcolor{orange}{U}\textcolor{black}{H}\textcolor{red}{Z}\textcolor{blue}{C}\textcolor{darkgreen}{R}\textcolor{orange}{F}\textcolor{black}{H}\textcolor{red}{Y}\textcolor{blue}{K}\textcolor{darkgreen}{F}\textcolor{orange}{S}\textcolor{black}{O}\textcolor{red}{J}\textcolor{blue}{C}\textcolor{darkgreen}{P}\textcolor{orange}{G}\textcolor{black}{M}\textcolor{red}{M}\textcolor{blue}{R}\textcolor{darkgreen}{B}\textcolor{orange}{V}\textcolor{black}{U}\textcolor{red}{J}\textcolor{blue}{F}\textcolor{darkgreen}{B}\textcolor{orange}{W}\textcolor{black}{M}\textcolor{red}{W}\textcolor{blue}{R}\textcolor{darkgreen}{J}\textcolor{orange}{W}\textcolor{black}{E}\textcolor{red}{J}\textcolor{blue}{I}\textcolor{darkgreen}{Z}\textcolor{orange}{G}\textcolor{black}{G}\textcolor{red}{L}\textcolor{blue}{Z}\textcolor{darkgreen}{G}\textcolor{orange}{L}\textcolor{black}{H}\textcolor{red}{T}\textcolor{blue}{U}\textcolor{darkgreen}{O}\textcolor{orange}{F}\textcolor{black}{W}\textcolor{red}{Q}\textcolor{blue}{F}\textcolor{darkgreen}{C}\textcolor{orange}{C}\textcolor{black}{X}\textcolor{red}{I}\textcolor{blue}{U}\textcolor{darkgreen}{C}\textcolor{orange}{O}\textcolor{black}{G}\textcolor{red}{T}\textcolor{blue}{E}\textcolor{darkgreen}{S}\textcolor{orange}{S}\textcolor{black}{L}\textcolor{red}{K}\textcolor{blue}{R}\textcolor{darkgreen}{F}\textcolor{orange}{S}\textcolor{black}{L}\textcolor{red}{N}\textcolor{blue}{T}\textcolor{darkgreen}{C}\textcolor{orange}{M}\textcolor{black}{E}
|
||||
\textcolor{red}{I}\textcolor{blue}{K}\textcolor{darkgreen}{C}\textcolor{orange}{O}\textcolor{black}{A}\textcolor{red}{J}\textcolor{blue}{I}\textcolor{darkgreen}{S}\textcolor{orange}{A}\textcolor{black}{M}\textcolor{red}{G}\textcolor{blue}{V}\textcolor{darkgreen}{B}\textcolor{orange}{L}\textcolor{black}{B}\textcolor{red}{S}\textcolor{blue}{K}\textcolor{darkgreen}{V}\textcolor{orange}{W}\textcolor{black}{N}\textcolor{red}{S}\textcolor{blue}{U}\textcolor{darkgreen}{S}\textcolor{orange}{J}\textcolor{black}{Z}\textcolor{red}{W}\textcolor{blue}{F}\textcolor{darkgreen}{K}\textcolor{orange}{L}\textcolor{black}{A}\textcolor{red}{Y}\textcolor{blue}{Y}\textcolor{darkgreen}{S}\textcolor{orange}{F}\textcolor{black}{M}\textcolor{red}{T}\textcolor{blue}{F}\textcolor{darkgreen}{Y}\textcolor{orange}{L}\textcolor{black}{A}\textcolor{red}{J}\textcolor{blue}{F}\textcolor{darkgreen}{H}\textcolor{orange}{Z}\textcolor{black}{X}\textcolor{red}{W}\textcolor{blue}{R}\textcolor{darkgreen}{G}\textcolor{orange}{B}\textcolor{black}{N}\textcolor{red}{X}\textcolor{blue}{K}\textcolor{darkgreen}{O}\textcolor{orange}{K}\textcolor{black}{Y}\textcolor{red}{F}\textcolor{blue}{Z}\textcolor{darkgreen}{F}\textcolor{orange}{S}\textcolor{black}{G}\textcolor{red}{I}\textcolor{blue}{Y}\textcolor{darkgreen}{O}\textcolor{orange}{N}\textcolor{black}{B}\textcolor{red}{S}\textcolor{blue}{X}\textcolor{darkgreen}{D}\textcolor{orange}{W}\textcolor{black}{K}\textcolor{red}{M}\textcolor{blue}{R}\textcolor{darkgreen}{D}\textcolor{orange}{K}\textcolor{black}{M}\textcolor{red}{M}\textcolor{blue}{V}\textcolor{darkgreen}{P}\textcolor{orange}{W}\textcolor{black}{M}\textcolor{red}{Y}\textcolor{blue}{V}\textcolor{darkgreen}{F}\textcolor{orange}{U}\textcolor{black}{E}\textcolor{red}{F}\textcolor{blue}{Z}\textcolor{darkgreen}{A}\textcolor{orange}{T}\textcolor{black}{X}\textcolor{red}{H}\textcolor{blue}{R}\textcolor{darkgreen}{I}\textcolor{orange}{K}\textcolor{black}{X}\textcolor{red}{N}\textcolor{blue}{K}\textcolor{darkgreen}{K}\textcolor{orange}{S}\textcolor{black}{L}\textcolor{red}{L}\textcolor{blue}{I}\textcolor{darkgreen}{O}\textcolor{orange}{K}\textcolor{black}{L}\textcolor{red}{D}\textcolor{blue}{R}\textcolor{darkgreen}{B}\textcolor{orange}{V}\textcolor{black}{P}
|
||||
\textcolor{red}{F}\textcolor{blue}{E}\textcolor{darkgreen}{H}\textcolor{orange}{W}\textcolor{black}{W}\textcolor{red}{B}\textcolor{blue}{V}\textcolor{darkgreen}{O}\textcolor{orange}{J}\textcolor{black}{M}\textcolor{red}{M}\textcolor{blue}{F}\textcolor{darkgreen}{I}\textcolor{orange}{Y}\textcolor{black}{A}\textcolor{red}{F}\textcolor{blue}{J}\textcolor{darkgreen}{T}\textcolor{orange}{G}\textcolor{black}{K}\textcolor{red}{Y}\textcolor{blue}{Y}\textcolor{darkgreen}{O}\textcolor{orange}{L}\textcolor{black}{M}\textcolor{red}{M}\textcolor{blue}{V}\textcolor{darkgreen}{D}\textcolor{orange}{S}\textcolor{black}{L}\textcolor{red}{X}\textcolor{blue}{Z}\textcolor{darkgreen}{B}\textcolor{orange}{Y}\textcolor{black}{M}\textcolor{red}{M}\textcolor{blue}{V}\textcolor{darkgreen}{F}\textcolor{orange}{W}\textcolor{black}{S}\textcolor{red}{G}\textcolor{blue}{I}\textcolor{darkgreen}{S}\textcolor{orange}{C}\textcolor{black}{L}\textcolor{red}{A}\textcolor{blue}{Y}\textcolor{darkgreen}{Y}\textcolor{orange}{O}\textcolor{black}{L}\textcolor{red}{F}\textcolor{blue}{T}\textcolor{darkgreen}{I}\textcolor{orange}{B}\textcolor{black}{A}\textcolor{red}{G}\textcolor{blue}{L}\textcolor{darkgreen}{V}\textcolor{orange}{E}\textcolor{black}{M}\textcolor{red}{T}\textcolor{blue}{Q}\textcolor{darkgreen}{C}\textcolor{orange}{M}\textcolor{black}{D}\textcolor{red}{T}\textcolor{blue}{D}\textcolor{darkgreen}{Z}\textcolor{orange}{B}\textcolor{black}{D}\textcolor{red}{X}\textcolor{blue}{F}\textcolor{darkgreen}{M}\textcolor{orange}{S}\textcolor{black}{K}\textcolor{red}{G}\textcolor{blue}{T}\textcolor{darkgreen}{J}\textcolor{orange}{H}\textcolor{black}{W}\textcolor{red}{I}\textcolor{blue}{M}\textcolor{darkgreen}{R}\textcolor{orange}{R}\textcolor{black}{L}\textcolor{red}{K}\textcolor{blue}{T}\textcolor{darkgreen}{U}\textcolor{orange}{R}\textcolor{black}{W}\textcolor{red}{G}\textcolor{blue}{G}\textcolor{darkgreen}{C}\textcolor{orange}{O}\textcolor{black}{U}\textcolor{red}{D}\textcolor{blue}{T}\textcolor{darkgreen}{Y}\textcolor{orange}{W}\textcolor{black}{C}\textcolor{red}{X}\textcolor{blue}{U}\textcolor{darkgreen}{K}\textcolor{orange}{H}\textcolor{black}{Z}\textcolor{red}{X}\textcolor{blue}{K}\textcolor{darkgreen}{Z}\textcolor{orange}{F}\textcolor{black}{K}
|
||||
\textcolor{red}{M}\textcolor{blue}{K}\textcolor{darkgreen}{F}\textcolor{orange}{F}\textcolor{black}{S}\textcolor{red}{G}\textcolor{blue}{T}\textcolor{darkgreen}{K}\textcolor{orange}{V}\textcolor{black}{W}\textcolor{red}{K}\textcolor{blue}{I}\textcolor{darkgreen}{R}\textcolor{orange}{M}\textcolor{black}{Q}\textcolor{red}{X}\textcolor{blue}{Y}\textcolor{darkgreen}{B}\textcolor{orange}{B}\textcolor{black}{G}\textcolor{red}{P}\textcolor{blue}{N}\textcolor{darkgreen}{E}\textcolor{orange}{U}\textcolor{black}{Z}\textcolor{red}{H}\textcolor{blue}{B}\textcolor{darkgreen}{N}\textcolor{orange}{O}\textcolor{black}{Q}\textcolor{red}{E}\textcolor{blue}{J}\textcolor{darkgreen}{R}\textcolor{orange}{R}\textcolor{black}{K}\textcolor{red}{H}\textcolor{blue}{S}\textcolor{darkgreen}{K}\textcolor{orange}{C}\textcolor{black}{O}\textcolor{red}{T}\textcolor{blue}{D}\textcolor{darkgreen}{Z}\textcolor{orange}{R}\textcolor{black}{G}\textcolor{red}{N}\textcolor{blue}{G}\textcolor{darkgreen}{K}\textcolor{orange}{S}\textcolor{black}{V}\textcolor{red}{B}\textcolor{blue}{K}\textcolor{darkgreen}{Z}\textcolor{orange}{G}\textcolor{black}{Z}\textcolor{red}{H}\textcolor{blue}{Z}\textcolor{darkgreen}{C}\textcolor{orange}{R}\textcolor{black}{W}\textcolor{red}{O}\textcolor{blue}{J}\textcolor{darkgreen}{I}\textcolor{orange}{Q}\textcolor{black}{G}\textcolor{red}{F}\textcolor{blue}{J}\textcolor{darkgreen}{S}\textcolor{orange}{O}\textcolor{black}{U}\textcolor{red}{D}\textcolor{blue}{N}\textcolor{darkgreen}{J}\textcolor{orange}{V}\textcolor{black}{S}\textcolor{red}{E}\textcolor{blue}{Q}\textcolor{darkgreen}{S}\textcolor{orange}{S}\textcolor{black}{L}\textcolor{red}{X}\textcolor{blue}{Q}\textcolor{darkgreen}{C}\textcolor{orange}{W}\textcolor{black}{F}\textcolor{red}{Z}\textcolor{blue}{Y}\textcolor{darkgreen}{Y}\textcolor{orange}{W}\textcolor{black}{K}\textcolor{red}{P}\textcolor{blue}{N}\textcolor{darkgreen}{K}\textcolor{orange}{V}\textcolor{black}{S}\textcolor{red}{L}\textcolor{blue}{N}\textcolor{darkgreen}{X}\textcolor{orange}{V}\textcolor{black}{K}\textcolor{red}{H}\textcolor{blue}{R}\textcolor{darkgreen}{V}\textcolor{orange}{K}\textcolor{black}{Z}\textcolor{red}{X}\textcolor{blue}{W}\textcolor{darkgreen}{V}\textcolor{orange}{O}\textcolor{black}{Y}
|
||||
\textcolor{red}{X}\textcolor{blue}{X}\textcolor{darkgreen}{R}\textcolor{orange}{B}\textcolor{black}{V}\textcolor{red}{T}\textcolor{blue}{L}\textcolor{darkgreen}{V}\textcolor{orange}{G}\textcolor{black}{Z}\textcolor{red}{X}\textcolor{blue}{S}\textcolor{darkgreen}{T}\textcolor{orange}{S}\textcolor{black}{L}\textcolor{red}{P}\textcolor{blue}{T}\textcolor{darkgreen}{I}\textcolor{orange}{C}\textcolor{black}{S}\textcolor{red}{W}\textcolor{blue}{X}\textcolor{darkgreen}{U}\textcolor{orange}{W}\textcolor{black}{N}\textcolor{red}{X}\textcolor{blue}{W}\textcolor{darkgreen}{X}\textcolor{orange}{S}\textcolor{black}{V}\textcolor{red}{B}\textcolor{blue}{S}\textcolor{darkgreen}{R}\textcolor{orange}{K}\textcolor{black}{G}\textcolor{red}{H}\textcolor{blue}{I}\textcolor{darkgreen}{R}\textcolor{orange}{B}\textcolor{black}{V}\textcolor{red}{B}\textcolor{blue}{N}\textcolor{darkgreen}{K}\textcolor{orange}{C}\textcolor{black}{G}\textcolor{red}{D}\textcolor{blue}{Y}\textcolor{darkgreen}{Y}\textcolor{orange}{S}\textcolor{black}{G}\textcolor{red}{G}\textcolor{blue}{J}\textcolor{darkgreen}{C}\textcolor{orange}{S}\textcolor{black}{K}\textcolor{red}{L}\textcolor{blue}{Y}\textcolor{darkgreen}{I}\textcolor{orange}{O}\textcolor{black}{N}\textcolor{red}{X}\textcolor{blue}{Q}\textcolor{darkgreen}{V}\textcolor{orange}{R}\textcolor{black}{T}\textcolor{red}{R}\textcolor{blue}{F}\textcolor{darkgreen}{E}\textcolor{orange}{R}\textcolor{black}{L}\textcolor{red}{A}\textcolor{blue}{F}\textcolor{darkgreen}{K}\textcolor{orange}{V}\textcolor{black}{S}\textcolor{red}{L}\textcolor{blue}{R}\textcolor{darkgreen}{R}\textcolor{orange}{R}\textcolor{black}{W}\textcolor{red}{T}\textcolor{blue}{Q}\textcolor{darkgreen}{C}\textcolor{orange}{H}\textcolor{black}{Z}\textcolor{red}{X}\textcolor{blue}{I}\textcolor{darkgreen}{Z}\textcolor{orange}{T}\textcolor{black}{X}\textcolor{red}{X}\textcolor{blue}{W}\textcolor{darkgreen}{V}\textcolor{orange}{B}\textcolor{black}{U}\textcolor{red}{X}}
|
|
@ -1,8 +0,0 @@
|
|||
\texttt{\textcolor{black}{HBXRPTKHHOMUMEG
|
||||
HWXGLLEAMBNZAMA
|
||||
XNYGBKMMEXXLLPW
|
||||
MAKMLMSLLAMDDKW
|
||||
LWUCZKSWQGZQKOG
|
||||
VZWGUSLFKSKZYVZ
|
||||
LSNVGVGGKNTLSWZ
|
||||
XU}}\textcolor{black}{$$\kappa_o = 0.0511$$}
|
|
@ -1,8 +0,0 @@
|
|||
\texttt{\textcolor{blue}{NUVZCFUPCKCRFRI
|
||||
ZUFUERTKIVKUFYF
|
||||
FRKZYXRVVZRKIRE
|
||||
VFJYVZVIYTLQDFT
|
||||
MTGTUKKTIYNBJSD
|
||||
GKZJJNQQYNNRWXL
|
||||
STXWSINYJYQFFRQ
|
||||
IW}}\textcolor{blue}{$$\kappa_o = 0.0496$$}
|
|
@ -1,8 +0,0 @@
|
|||
\texttt{\textcolor{darkgreen}{CGFBZCGWRFPBBJZ
|
||||
GOCCSFCCSBVSKSY
|
||||
HGOFODDPFAIKOBH
|
||||
OITODBFSYIVCZMJ
|
||||
RUCYKZFKRBENRKZ
|
||||
KZCISJSCYKXVVRV
|
||||
TIUXRRKYCIVEKRC
|
||||
ZV}}\textcolor{darkgreen}{$$\kappa_o = 0.0517$$}
|
|
@ -1,8 +0,0 @@
|
|||
\texttt{\textcolor{orange}{JVYSGVGUFSGVWWG
|
||||
LFCOSSMOALWJLFL
|
||||
ZBKSNWKWUTKSKVW
|
||||
JYGLSYWCOBEMBSH
|
||||
RROWHFFVMBUORCR
|
||||
SGRQOVSWWVVKOBG
|
||||
SCWSKBCSSORRVRH
|
||||
TB}}\textcolor{orange}{$$\kappa_o = 0.0601$$}
|
|
@ -1,8 +0,0 @@
|
|||
\texttt{\textcolor{red}{YFAIJBSWZYJMJWJ
|
||||
LTQITKNIJGSSWYT
|
||||
JWXFISMMYFHNLDF
|
||||
BMFYMXMGAFGTTXG
|
||||
IKGDXXMGKXPHEHT
|
||||
NBHOFDEXZPLHXXT
|
||||
XPWXBHBDGLXRALT
|
||||
XXX}}\textcolor{red}{$$\kappa_o = 0.0523$$}
|
|
@ -1,5 +0,0 @@
|
|||
\texttt{\textcolor{red}{Y}\textcolor{blue}{N}\textcolor{darkgreen}{C}\textcolor{orange}{J}\textcolor{black}{H}\textcolor{yellow}{F}\textcolor{red}{U}\textcolor{blue}{G}\textcolor{darkgreen}{V}\textcolor{orange}{B}\textcolor{black}{A}\textcolor{yellow}{V}\textcolor{red}{F}\textcolor{blue}{Y}\textcolor{darkgreen}{X}\textcolor{orange}{I}\textcolor{black}{Z}\textcolor{yellow}{B}\textcolor{red}{S}\textcolor{blue}{R}\textcolor{darkgreen}{J}\textcolor{orange}{C}\textcolor{black}{Z}\textcolor{yellow}{G}\textcolor{red}{P}\textcolor{blue}{B}\textcolor{darkgreen}{F}\textcolor{orange}{C}\textcolor{black}{V}\textcolor{yellow}{T}\textcolor{red}{S}\textcolor{blue}{U}\textcolor{darkgreen}{G}\textcolor{orange}{G}\textcolor{black}{K}\textcolor{yellow}{W}\textcolor{red}{P}\textcolor{blue}{W}\textcolor{darkgreen}{U}\textcolor{orange}{H}\textcolor{black}{Z}\textcolor{yellow}{C}\textcolor{red}{R}\textcolor{blue}{F}\textcolor{darkgreen}{H}\textcolor{orange}{Y}\textcolor{black}{K}\textcolor{yellow}{F}\textcolor{red}{S}\textcolor{blue}{O}\textcolor{darkgreen}{J}\textcolor{orange}{C}\textcolor{black}{P}\textcolor{yellow}{G}\textcolor{red}{M}\textcolor{blue}{M}\textcolor{darkgreen}{R}\textcolor{orange}{B}\textcolor{black}{V}\textcolor{yellow}{U}\textcolor{red}{J}\textcolor{blue}{F}\textcolor{darkgreen}{B}\textcolor{orange}{W}\textcolor{black}{M}\textcolor{yellow}{W}\textcolor{red}{R}\textcolor{blue}{J}\textcolor{darkgreen}{W}\textcolor{orange}{E}\textcolor{black}{J}\textcolor{yellow}{I}\textcolor{red}{Z}\textcolor{blue}{G}\textcolor{darkgreen}{G}\textcolor{orange}{L}\textcolor{black}{Z}\textcolor{yellow}{G}\textcolor{red}{L}\textcolor{blue}{H}\textcolor{darkgreen}{T}\textcolor{orange}{U}\textcolor{black}{O}\textcolor{yellow}{F}\textcolor{red}{W}\textcolor{blue}{Q}\textcolor{darkgreen}{F}\textcolor{orange}{C}\textcolor{black}{C}\textcolor{yellow}{X}\textcolor{red}{I}\textcolor{blue}{U}\textcolor{darkgreen}{C}\textcolor{orange}{O}\textcolor{black}{G}\textcolor{yellow}{T}\textcolor{red}{E}\textcolor{blue}{S}\textcolor{darkgreen}{S}\textcolor{orange}{L}\textcolor{black}{K}\textcolor{yellow}{R}\textcolor{red}{F}\textcolor{blue}{S}\textcolor{darkgreen}{L}\textcolor{orange}{N}\textcolor{black}{T}\textcolor{yellow}{C}\textcolor{red}{M}\textcolor{blue}{E}
|
||||
\textcolor{darkgreen}{I}\textcolor{orange}{K}\textcolor{black}{C}\textcolor{yellow}{O}\textcolor{red}{A}\textcolor{blue}{J}\textcolor{darkgreen}{I}\textcolor{orange}{S}\textcolor{black}{A}\textcolor{yellow}{M}\textcolor{red}{G}\textcolor{blue}{V}\textcolor{darkgreen}{B}\textcolor{orange}{L}\textcolor{black}{B}\textcolor{yellow}{S}\textcolor{red}{K}\textcolor{blue}{V}\textcolor{darkgreen}{W}\textcolor{orange}{N}\textcolor{black}{S}\textcolor{yellow}{U}\textcolor{red}{S}\textcolor{blue}{J}\textcolor{darkgreen}{Z}\textcolor{orange}{W}\textcolor{black}{F}\textcolor{yellow}{K}\textcolor{red}{L}\textcolor{blue}{A}\textcolor{darkgreen}{Y}\textcolor{orange}{Y}\textcolor{black}{S}\textcolor{yellow}{F}\textcolor{red}{M}\textcolor{blue}{T}\textcolor{darkgreen}{F}\textcolor{orange}{Y}\textcolor{black}{L}\textcolor{yellow}{A}\textcolor{red}{J}\textcolor{blue}{F}\textcolor{darkgreen}{H}\textcolor{orange}{Z}\textcolor{black}{X}\textcolor{yellow}{W}\textcolor{red}{R}\textcolor{blue}{G}\textcolor{darkgreen}{B}\textcolor{orange}{N}\textcolor{black}{X}\textcolor{yellow}{K}\textcolor{red}{O}\textcolor{blue}{K}\textcolor{darkgreen}{Y}\textcolor{orange}{F}\textcolor{black}{Z}\textcolor{yellow}{F}\textcolor{red}{S}\textcolor{blue}{G}\textcolor{darkgreen}{I}\textcolor{orange}{Y}\textcolor{black}{O}\textcolor{yellow}{N}\textcolor{red}{B}\textcolor{blue}{S}\textcolor{darkgreen}{X}\textcolor{orange}{D}\textcolor{black}{W}\textcolor{yellow}{K}\textcolor{red}{M}\textcolor{blue}{R}\textcolor{darkgreen}{D}\textcolor{orange}{K}\textcolor{black}{M}\textcolor{yellow}{M}\textcolor{red}{V}\textcolor{blue}{P}\textcolor{darkgreen}{W}\textcolor{orange}{M}\textcolor{black}{Y}\textcolor{yellow}{V}\textcolor{red}{F}\textcolor{blue}{U}\textcolor{darkgreen}{E}\textcolor{orange}{F}\textcolor{black}{Z}\textcolor{yellow}{A}\textcolor{red}{T}\textcolor{blue}{X}\textcolor{darkgreen}{H}\textcolor{orange}{R}\textcolor{black}{I}\textcolor{yellow}{K}\textcolor{red}{X}\textcolor{blue}{N}\textcolor{darkgreen}{K}\textcolor{orange}{K}\textcolor{black}{S}\textcolor{yellow}{L}\textcolor{red}{L}\textcolor{blue}{I}\textcolor{darkgreen}{O}\textcolor{orange}{K}\textcolor{black}{L}\textcolor{yellow}{D}\textcolor{red}{R}\textcolor{blue}{B}\textcolor{darkgreen}{V}\textcolor{orange}{P}
|
||||
\textcolor{black}{F}\textcolor{yellow}{E}\textcolor{red}{H}\textcolor{blue}{W}\textcolor{darkgreen}{W}\textcolor{orange}{B}\textcolor{black}{V}\textcolor{yellow}{O}\textcolor{red}{J}\textcolor{blue}{M}\textcolor{darkgreen}{M}\textcolor{orange}{F}\textcolor{black}{I}\textcolor{yellow}{Y}\textcolor{red}{A}\textcolor{blue}{F}\textcolor{darkgreen}{J}\textcolor{orange}{T}\textcolor{black}{G}\textcolor{yellow}{K}\textcolor{red}{Y}\textcolor{blue}{Y}\textcolor{darkgreen}{O}\textcolor{orange}{L}\textcolor{black}{M}\textcolor{yellow}{M}\textcolor{red}{V}\textcolor{blue}{D}\textcolor{darkgreen}{S}\textcolor{orange}{L}\textcolor{black}{X}\textcolor{yellow}{Z}\textcolor{red}{B}\textcolor{blue}{Y}\textcolor{darkgreen}{M}\textcolor{orange}{M}\textcolor{black}{V}\textcolor{yellow}{F}\textcolor{red}{W}\textcolor{blue}{S}\textcolor{darkgreen}{G}\textcolor{orange}{I}\textcolor{black}{S}\textcolor{yellow}{C}\textcolor{red}{L}\textcolor{blue}{A}\textcolor{darkgreen}{Y}\textcolor{orange}{Y}\textcolor{black}{O}\textcolor{yellow}{L}\textcolor{red}{F}\textcolor{blue}{T}\textcolor{darkgreen}{I}\textcolor{orange}{B}\textcolor{black}{A}\textcolor{yellow}{G}\textcolor{red}{L}\textcolor{blue}{V}\textcolor{darkgreen}{E}\textcolor{orange}{M}\textcolor{black}{T}\textcolor{yellow}{Q}\textcolor{red}{C}\textcolor{blue}{M}\textcolor{darkgreen}{D}\textcolor{orange}{T}\textcolor{black}{D}\textcolor{yellow}{Z}\textcolor{red}{B}\textcolor{blue}{D}\textcolor{darkgreen}{X}\textcolor{orange}{F}\textcolor{black}{M}\textcolor{yellow}{S}\textcolor{red}{K}\textcolor{blue}{G}\textcolor{darkgreen}{T}\textcolor{orange}{J}\textcolor{black}{H}\textcolor{yellow}{W}\textcolor{red}{I}\textcolor{blue}{M}\textcolor{darkgreen}{R}\textcolor{orange}{R}\textcolor{black}{L}\textcolor{yellow}{K}\textcolor{red}{T}\textcolor{blue}{U}\textcolor{darkgreen}{R}\textcolor{orange}{W}\textcolor{black}{G}\textcolor{yellow}{G}\textcolor{red}{C}\textcolor{blue}{O}\textcolor{darkgreen}{U}\textcolor{orange}{D}\textcolor{black}{T}\textcolor{yellow}{Y}\textcolor{red}{W}\textcolor{blue}{C}\textcolor{darkgreen}{X}\textcolor{orange}{U}\textcolor{black}{K}\textcolor{yellow}{H}\textcolor{red}{Z}\textcolor{blue}{X}\textcolor{darkgreen}{K}\textcolor{orange}{Z}\textcolor{black}{F}\textcolor{yellow}{K}
|
||||
\textcolor{red}{M}\textcolor{blue}{K}\textcolor{darkgreen}{F}\textcolor{orange}{F}\textcolor{black}{S}\textcolor{yellow}{G}\textcolor{red}{T}\textcolor{blue}{K}\textcolor{darkgreen}{V}\textcolor{orange}{W}\textcolor{black}{K}\textcolor{yellow}{I}\textcolor{red}{R}\textcolor{blue}{M}\textcolor{darkgreen}{Q}\textcolor{orange}{X}\textcolor{black}{Y}\textcolor{yellow}{B}\textcolor{red}{B}\textcolor{blue}{G}\textcolor{darkgreen}{P}\textcolor{orange}{N}\textcolor{black}{E}\textcolor{yellow}{U}\textcolor{red}{Z}\textcolor{blue}{H}\textcolor{darkgreen}{B}\textcolor{orange}{N}\textcolor{black}{O}\textcolor{yellow}{Q}\textcolor{red}{E}\textcolor{blue}{J}\textcolor{darkgreen}{R}\textcolor{orange}{R}\textcolor{black}{K}\textcolor{yellow}{H}\textcolor{red}{S}\textcolor{blue}{K}\textcolor{darkgreen}{C}\textcolor{orange}{O}\textcolor{black}{T}\textcolor{yellow}{D}\textcolor{red}{Z}\textcolor{blue}{R}\textcolor{darkgreen}{G}\textcolor{orange}{N}\textcolor{black}{G}\textcolor{yellow}{K}\textcolor{red}{S}\textcolor{blue}{V}\textcolor{darkgreen}{B}\textcolor{orange}{K}\textcolor{black}{Z}\textcolor{yellow}{G}\textcolor{red}{Z}\textcolor{blue}{H}\textcolor{darkgreen}{Z}\textcolor{orange}{C}\textcolor{black}{R}\textcolor{yellow}{W}\textcolor{red}{O}\textcolor{blue}{J}\textcolor{darkgreen}{I}\textcolor{orange}{Q}\textcolor{black}{G}\textcolor{yellow}{F}\textcolor{red}{J}\textcolor{blue}{S}\textcolor{darkgreen}{O}\textcolor{orange}{U}\textcolor{black}{D}\textcolor{yellow}{N}\textcolor{red}{J}\textcolor{blue}{V}\textcolor{darkgreen}{S}\textcolor{orange}{E}\textcolor{black}{Q}\textcolor{yellow}{S}\textcolor{red}{S}\textcolor{blue}{L}\textcolor{darkgreen}{X}\textcolor{orange}{Q}\textcolor{black}{C}\textcolor{yellow}{W}\textcolor{red}{F}\textcolor{blue}{Z}\textcolor{darkgreen}{Y}\textcolor{orange}{Y}\textcolor{black}{W}\textcolor{yellow}{K}\textcolor{red}{P}\textcolor{blue}{N}\textcolor{darkgreen}{K}\textcolor{orange}{V}\textcolor{black}{S}\textcolor{yellow}{L}\textcolor{red}{N}\textcolor{blue}{X}\textcolor{darkgreen}{V}\textcolor{orange}{K}\textcolor{black}{H}\textcolor{yellow}{R}\textcolor{red}{V}\textcolor{blue}{K}\textcolor{darkgreen}{Z}\textcolor{orange}{X}\textcolor{black}{W}\textcolor{yellow}{V}\textcolor{red}{O}\textcolor{blue}{Y}
|
||||
\textcolor{darkgreen}{X}\textcolor{orange}{X}\textcolor{black}{R}\textcolor{yellow}{B}\textcolor{red}{V}\textcolor{blue}{T}\textcolor{darkgreen}{L}\textcolor{orange}{V}\textcolor{black}{G}\textcolor{yellow}{Z}\textcolor{red}{X}\textcolor{blue}{S}\textcolor{darkgreen}{T}\textcolor{orange}{S}\textcolor{black}{L}\textcolor{yellow}{P}\textcolor{red}{T}\textcolor{blue}{I}\textcolor{darkgreen}{C}\textcolor{orange}{S}\textcolor{black}{W}\textcolor{yellow}{X}\textcolor{red}{U}\textcolor{blue}{W}\textcolor{darkgreen}{N}\textcolor{orange}{X}\textcolor{black}{W}\textcolor{yellow}{X}\textcolor{red}{S}\textcolor{blue}{V}\textcolor{darkgreen}{B}\textcolor{orange}{S}\textcolor{black}{R}\textcolor{yellow}{K}\textcolor{red}{G}\textcolor{blue}{H}\textcolor{darkgreen}{I}\textcolor{orange}{R}\textcolor{black}{B}\textcolor{yellow}{V}\textcolor{red}{B}\textcolor{blue}{N}\textcolor{darkgreen}{K}\textcolor{orange}{C}\textcolor{black}{G}\textcolor{yellow}{D}\textcolor{red}{Y}\textcolor{blue}{Y}\textcolor{darkgreen}{S}\textcolor{orange}{G}\textcolor{black}{G}\textcolor{yellow}{J}\textcolor{red}{C}\textcolor{blue}{S}\textcolor{darkgreen}{K}\textcolor{orange}{L}\textcolor{black}{Y}\textcolor{yellow}{I}\textcolor{red}{O}\textcolor{blue}{N}\textcolor{darkgreen}{X}\textcolor{orange}{Q}\textcolor{black}{V}\textcolor{yellow}{R}\textcolor{red}{T}\textcolor{blue}{R}\textcolor{darkgreen}{F}\textcolor{orange}{E}\textcolor{black}{R}\textcolor{yellow}{L}\textcolor{red}{A}\textcolor{blue}{F}\textcolor{darkgreen}{K}\textcolor{orange}{V}\textcolor{black}{S}\textcolor{yellow}{L}\textcolor{red}{R}\textcolor{blue}{R}\textcolor{darkgreen}{R}\textcolor{orange}{W}\textcolor{black}{T}\textcolor{yellow}{Q}\textcolor{red}{C}\textcolor{blue}{H}\textcolor{darkgreen}{Z}\textcolor{orange}{X}\textcolor{black}{I}\textcolor{yellow}{Z}\textcolor{red}{T}\textcolor{blue}{X}\textcolor{darkgreen}{X}\textcolor{orange}{W}\textcolor{black}{V}\textcolor{yellow}{B}\textcolor{red}{U}\textcolor{blue}{X}}
|
|
@ -1,5 +0,0 @@
|
|||
\texttt{\textcolor{black}{HAZZVKZKPVMJZOCGKTCA
|
||||
BSFSLXXZOWMYZISLFVIG
|
||||
MXVSOATDMHLGTKFSKYEO
|
||||
KTGZRGDQCWSHWRGLWWRB
|
||||
GGYVRSTIV}}
|