RoboRally/remote_control/position_controller.py

350 lines
11 KiB
Python
Raw Normal View History

2019-05-06 20:23:31 +00:00
# startup:
# roscore -> start ros
# rosparam set cv_camera/device_id 0 -> set appropriate camera device
# rosrun cv_camera cv_camera_node -> start the camera
# roslaunch aruco_detect aruco_detect.launch camera:=cv_camera image:=image_raw dictionary:=16 transport:= fiducial_len:=0.1 # aruco marker detection
# python fiducial_to_2d_pos_angle.py -> compute position and angle of markers in 2d plane
2019-05-06 20:23:31 +00:00
import sys
import rospy
import pygame
import numpy as np
import socket
2019-05-24 14:21:54 +00:00
import scipy.integrate
import threading
from copy import deepcopy
import matplotlib.pyplot as plt
import matplotlib.animation as anim
import time
2019-05-06 20:23:31 +00:00
from marker_pos_angle.msg import id_pos_angle
2019-05-24 14:21:54 +00:00
2019-05-06 20:23:31 +00:00
class Robot:
def __init__(self, id, ip=None):
self.pos = None
2019-05-24 14:21:54 +00:00
self.orient = None
2019-05-06 20:23:31 +00:00
self.id = id
2019-05-24 14:21:54 +00:00
self.pos = None
self.euler = None
self.ip = ip
def f_ode(t, x, u):
# dynamical model of the two-wheeled robot
# TODO: find exact values for these parameters
r = 0.03
R = 0.05
d = 0.02
theta = x[2]
omega_r = u[0]
omega_l = u[1]
dx = np.zeros(3)
dx[0] = (r/2.0 * np.cos(theta) - r*d/(2.0*R) * np.sin(theta)) * omega_r \
+ (r/2.0 * np.cos(theta) + r*d/(2.0 * R) * np.sin(theta)) * omega_l
dx[1] = (r/2.0 * np.sin(theta) + r*d/(2.0*R) * np.cos(theta)) * omega_r \
+ (r/2 * np.sin(theta) - r*d/(2.0*R) * np.cos(theta)) * omega_l
dx[2] = -r/(2.0*R) * (omega_r - omega_l)
return dx
2019-05-06 20:23:31 +00:00
class RemoteController:
def __init__(self):
2019-05-24 14:21:54 +00:00
self.robots = [Robot(3)]
2019-05-06 20:23:31 +00:00
self.robot_ids = {}
for r in self.robots:
self.robot_ids[r.id] = r
2019-05-06 20:23:31 +00:00
# connect to robot
2019-05-06 20:23:31 +00:00
self.rc_socket = socket.socket()
try:
pass
self.rc_socket.connect(('192.168.1.101', 1234)) # connect to robot
2019-05-06 20:23:31 +00:00
except socket.error:
print("could not connect to socket")
self.t = time.time()
# variables for simulated state
self.x0 = None
self.ts = np.array([])
self.xs = []
# variables for measurements
self.tms_0 = None
self.xm_0 = None
self.tms = None
self.xms = None
2019-05-24 14:21:54 +00:00
self.mutex = threading.Lock()
marker_sub = rospy.Subscriber("/marker_id_pos_angle", id_pos_angle, self.measurement_callback)
# pid parameters
2019-05-24 14:21:54 +00:00
self.k = 0
self.ii = 0.1
self.pp = 0.4
self.inc = 0.0
self.alphas = []
self.speed = 1.0
self.controlling = False
self.u1 = 0.0
self.u2 = 0.0
# animation
2019-05-24 14:21:54 +00:00
self.fig = plt.figure()
self.ax = self.fig.add_subplot(1,1,1)
self.xdata, self.ydata = [], []
self.line, = self.ax.plot([],[])
self.line_sim, = self.ax.plot([], [])
self.dirm, = self.ax.plot([], [])
self.dirs, = self.ax.plot([], [])
2019-05-24 14:21:54 +00:00
plt.xlabel('x-position')
plt.ylabel('y-position')
def ani(self):
self.ani = anim.FuncAnimation(self.fig, init_func=self.ani_init, func=self.ani_update, interval=10, blit=True)
plt.ion()
plt.show(block=True)
2019-05-24 14:21:54 +00:00
def ani_init(self):
self.ax.set_xlim(-2, 2)
self.ax.set_ylim(-2, 2)
self.ax.set_aspect('equal', adjustable='box')
return self.line, self.line_sim, self.dirm, self.dirs,
2019-05-24 14:21:54 +00:00
def ani_update(self, frame):
#print("plotting")
2019-05-24 14:21:54 +00:00
self.mutex.acquire()
2019-05-06 20:23:31 +00:00
try:
2019-05-24 14:21:54 +00:00
# copy data for plot from global arrays
if self.tms is not None:
tm_local = deepcopy(self.tms)
xm_local = deepcopy(self.xms)
if len(tm_local) > 0:
# plot path of the robot
2019-05-24 14:21:54 +00:00
self.line.set_data(xm_local[:,0], xm_local[:,1])
# compute and plot direction the robot is facing
2019-05-24 14:21:54 +00:00
a = xm_local[-1, 0]
b = xm_local[-1, 1]
2019-05-24 14:21:54 +00:00
a2 = a + np.cos(xm_local[-1, 2]) * 1.0
b2 = b + np.sin(xm_local[-1, 2]) * 1.0
self.dirm.set_data(np.array([a, a2]), np.array([b, b2]))
2019-05-24 14:21:54 +00:00
ts_local = deepcopy(self.ts)
xs_local = deepcopy(self.xs)
if len(ts_local) > 0:
# plot simulated path of the robot
2019-05-24 14:21:54 +00:00
self.line_sim.set_data(xs_local[:,0], xs_local[:,1])
# compute and plot direction the robot is facing
a = xs_local[-1, 0]
b = xs_local[-1, 1]
a2 = a + np.cos(xs_local[-1, 2]) * 1.0
b2 = b + np.sin(xs_local[-1, 2]) * 1.0
self.dirs.set_data(np.array([a, a2]), np.array([b, b2]))
2019-05-24 14:21:54 +00:00
finally:
self.mutex.release()
return self.line, self.line_sim, self.dirm, self.dirs,
2019-05-24 14:21:54 +00:00
def measurement_callback(self, data):
#print("data = {}".format(data))
if data.id in self.robot_ids:
r = self.robot_ids[data.id]
2019-05-06 20:23:31 +00:00
r.pos = (data.x, data.y) # only x and y component are important for us
r.euler = data.angle
2019-05-06 20:23:31 +00:00
#print("r.pos = {}".format(r.pos))
#print("r.angle = {}".format(r.euler))
2019-05-06 20:23:31 +00:00
# save measured position and angle for plotting
measurement = np.array([r.pos[0], r.pos[1], r.euler])
if self.tms_0 is None:
self.tms_0 = time.time()
self.xm_0 = measurement
2019-05-06 20:23:31 +00:00
self.mutex.acquire()
try:
self.tms = np.array([0.0])
self.xms = measurement
finally:
self.mutex.release()
2019-05-24 14:21:54 +00:00
else:
self.mutex.acquire()
try:
self.tms = np.vstack((self.tms, time.time() - self.tms_0))
self.xms = np.vstack((self.xms, measurement))
finally:
self.mutex.release()
2019-05-24 14:21:54 +00:00
def controller(self):
print("starting control")
2019-05-06 20:23:31 +00:00
while True:
keyboard_control = False
2019-05-24 14:21:54 +00:00
keyboard_control_speed_test = False
pid = True
2019-05-24 14:21:54 +00:00
if keyboard_control: # keyboard controller
2019-05-24 14:21:54 +00:00
events = pygame.event.get()
speed = 0.5
2019-05-24 14:21:54 +00:00
for event in events:
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_LEFT:
self.u1 = -speed
self.u2 = speed
#print("turn left: ({},{})".format(u1, u2))
elif event.key == pygame.K_RIGHT:
self.u1 = speed
self.u2 = -speed
2019-05-24 14:21:54 +00:00
#print("turn right: ({},{})".format(u1, u2))
elif event.key == pygame.K_UP:
self.u1 = speed
self.u2 = speed
#print("forward: ({},{})".format(self.u1, self.u2))
elif event.key == pygame.K_DOWN:
self.u1 = -speed
self.u2 = -speed
2019-05-24 14:21:54 +00:00
#print("forward: ({},{})".format(u1, u2))
self.rc_socket.send('({},{})\n'.format(self.u1, self.u2))
elif event.type == pygame.KEYUP:
self.u1 = 0
self.u2 = 0
#print("key released, resetting: ({},{})".format(u1, u2))
self.rc_socket.send('({},{})\n'.format(self.u1, self.u2))
tnew = time.time()
dt = tnew - self.t
r = scipy.integrate.ode(f_ode)
r.set_f_params(np.array([self.u1 * 13.32, self.u2 * 13.32]))
#print(self.x0)
if self.x0 is None:
if self.xm_0 is not None:
self.x0 = self.xm_0
self.xs = self.x0
else:
print("error: no measurement available to initialize simulation")
2019-05-24 14:21:54 +00:00
x = self.x0
r.set_initial_value(x, self.t)
xnew = r.integrate(r.t + dt)
self.t = tnew
self.x0 = xnew
self.mutex.acquire()
try:
self.ts = np.append(self.ts, tnew)
2019-05-24 14:21:54 +00:00
self.xs = np.vstack((self.xs, xnew))
finally:
self.mutex.release()
elif keyboard_control_speed_test:
events = pygame.event.get()
for event in events:
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_LEFT:
self.speed = self.speed / np.sqrt(np.sqrt(np.sqrt(10.0)))
elif event.key == pygame.K_RIGHT:
self.speed = self.speed * np.sqrt(np.sqrt(np.sqrt(10.0)))
elif event.key == pygame.K_UP:
u1 = self.speed
u2 = -self.speed
elif event.key == pygame.K_DOWN:
u1 = 0.0
u2 = 0.0
print("speed = {}".format(self.speed))
self.rc_socket.send('({},{})\n'.format(u1, u2))
elif pid:
# pid controller
2019-05-24 14:21:54 +00:00
events = pygame.event.get()
for event in events:
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_LEFT:
self.ii = self.ii / np.sqrt(np.sqrt(np.sqrt(10.0)))
print("ii = {}".format(self.pp))
elif event.key == pygame.K_RIGHT:
self.ii = self.ii * np.sqrt(np.sqrt(np.sqrt(10.0)))
print("ii = {}".format(self.pp))
elif event.key == pygame.K_UP:
self.controlling = True
elif event.key == pygame.K_DOWN:
self.controlling = False
self.rc_socket.send('({},{})\n'.format(0, 0))
dt = 0.05
2019-05-24 14:21:54 +00:00
if self.controlling:
# test: turn robot such that angle is zero
for r in self.robots:
if r.euler is not None:
self.k = self.k + 1
alpha = r.euler
2019-05-24 14:21:54 +00:00
self.alphas.append(alpha)
# compute error
2019-05-24 14:21:54 +00:00
e = alpha - 0
# compute integral of error (approximately)
2019-05-24 14:21:54 +00:00
self.inc += e * dt
# PID
p = self.pp * e
i = self.ii * self.inc
2019-05-24 14:21:54 +00:00
d = 0.0
# compute controls for robot from PID
u1 = p + i + d
u2 = - p - i - d
2019-05-24 14:21:54 +00:00
print("alpha = {}, u = ({}, {})".format(alpha, u1, u2))
self.rc_socket.send('({},{})\n'.format(u1, u2))
2019-05-06 20:23:31 +00:00
time.sleep(dt)
2019-05-06 20:23:31 +00:00
def main(args):
rospy.init_node('controller_node', anonymous=True)
rc = RemoteController()
pygame.init()
screenheight = 480
screenwidth = 640
screen = pygame.display.set_mode([screenwidth, screenheight])
threading.Thread(target=rc.controller).start()
rc.ani()
2019-05-06 20:23:31 +00:00
if __name__ == '__main__':
main(sys.argv)