RoboRally/remote_control/aruco_estimator.py

469 lines
20 KiB
Python
Raw Normal View History

import pyrealsense2 as rs
import numpy as np
import cv2
import os
import time
2020-11-14 14:01:01 +00:00
import math
2020-11-25 20:19:56 +00:00
from pyqtgraph.Qt import QtCore, QtGui
import pyqtgraph as pg
from shapely.geometry import LineString
2020-10-15 20:41:30 +00:00
from queue import Queue
import aruco
2020-11-17 20:23:22 +00:00
class ArucoEstimator:
corner_marker_ids = {
'a': 0,
'b': 1,
'c': 2,
'd': 3
}
corner_estimates = {
2020-10-24 19:08:20 +00:00
'a': {'pixel_coordinate': None, 'x': None, 'y': None, 'n_estimates': 0},
'b': {'pixel_coordinate': None, 'x': None, 'y': None, 'n_estimates': 0},
'c': {'pixel_coordinate': None, 'x': None, 'y': None, 'n_estimates': 0},
'd': {'pixel_coordinate': None, 'x': None, 'y': None, 'n_estimates': 0},
}
2020-11-25 20:19:56 +00:00
def __init__(self, robot_marker_ids=None, use_realsense=True, grid_columns=12, grid_rows=12):
self.app = QtGui.QApplication([])
## Create window with GraphicsView widget
self.win = pg.GraphicsLayoutWidget()
self.win.keyPressEvent = self.handleKeyPressEvent
self.win.show() ## show widget alone in its own window
self.win.setWindowTitle('ArucoEstimator')
self.view = self.win.addViewBox()
## lock the aspect ratio so pixels are always square
self.view.setAspectLocked(True)
## Create image item
self.img = pg.ImageItem(border='w')
self.img.setLevels([[0, 255], [0, 255], [0, 255]])
self.img.mouseClickEvent = self.handleMouseEvent
self.view.addItem(self.img)
self.grid_columns = grid_columns
self.grid_rows = grid_rows
if robot_marker_ids is None:
robot_marker_ids = []
self.robot_marker_ids = robot_marker_ids
2020-10-24 19:08:20 +00:00
self.robot_marker_estimates = dict([(marker_id, {'t': None, 'x': None, 'y': None, 'angle': None})
for marker_id in self.robot_marker_ids])
self.draw_grid = False
2020-11-25 20:19:56 +00:00
self.fps_start_time = time.time()
self.fps_counter = 0
2020-10-15 20:41:30 +00:00
self.event_queue = Queue()
2020-10-24 19:08:20 +00:00
if use_realsense: # check if realsense camera is connected
# Configure depth and color streams
self.pipeline = rs.pipeline()
config = rs.config()
2020-11-17 20:23:22 +00:00
# config.enable_stream(rs.stream.color, 1920, 1080, rs.format.bgr8, 30)
config.enable_stream(rs.stream.color, 1280, 720, rs.format.bgr8, 30)
# Start streaming
self.pipeline.start(config)
# disable auto exposure
color_sensor = self.pipeline.get_active_profile().get_device().query_sensors()[1]
color_sensor.set_option(rs.option.enable_auto_exposure, False)
camera_intrinsics = self.pipeline.get_active_profile().get_stream(
rs.stream.color).as_video_stream_profile().get_intrinsics()
self.camera_matrix = np.zeros((3, 3))
self.camera_matrix[0][0] = camera_intrinsics.fx
self.camera_matrix[1][1] = camera_intrinsics.fy
self.camera_matrix[0][2] = camera_intrinsics.ppx
self.camera_matrix[1][2] = camera_intrinsics.ppy
self.dist_coeffs = np.array(camera_intrinsics.coeffs)
# more info: https://dev.intelrealsense.com/docs/projection-in-intel-realsense-sdk-20
else:
# use other camera
self.cv_camera = cv2.VideoCapture(0)
self.pipeline = None
# create detector and get parameters
self.detector = aruco.MarkerDetector()
self.detector.setDetectionMode(aruco.DM_VIDEO_FAST, 0.05)
self.detector_params = self.detector.getParameters()
# print detector parameters
print("detector params:")
for val in dir(self.detector_params):
if not val.startswith("__"):
print("\t{} : {}".format(val, self.detector_params.__getattribute__(val)))
self.camparam = aruco.CameraParameters()
if use_realsense:
self.camparam.readFromXMLFile(os.path.join(os.path.dirname(__file__), "realsense.yml"))
else:
self.camparam.readFromXMLFile(os.path.join(os.path.dirname(__file__), "dfk72_6mm_param2.yml"))
2020-11-14 14:01:01 +00:00
self.drag_line_end = None
self.drag_line_start = None
self.previous_click = None
2020-11-25 20:19:56 +00:00
self.invert_grayscale = False
2020-11-14 14:01:01 +00:00
def compute_clicked_position(self, px, py):
if self.all_corners_detected():
# inter/extrapolate from clicked point to marker position
px1 = self.corner_estimates['a']['pixel_coordinate'][0]
px3 = self.corner_estimates['c']['pixel_coordinate'][0]
py1 = self.corner_estimates['a']['pixel_coordinate'][1]
py3 = self.corner_estimates['c']['pixel_coordinate'][1]
x1 = self.corner_estimates['a']['x']
x3 = self.corner_estimates['c']['x']
y1 = self.corner_estimates['a']['y']
y3 = self.corner_estimates['c']['y']
alpha = (px - px1) / (px3 - px1)
beta = (py - py1) / (py3 - py1)
print(f"alpha = {alpha}, beta = {beta}")
target_x = x1 + alpha * (x3 - x1)
target_y = y1 + beta * (y3 - y1)
target = np.array([target_x, target_y])
else:
print("not all markers have been detected!")
target = np.array([px, -py])
return target
2020-11-25 20:19:56 +00:00
def handleMouseEvent(self, event):
# get click position as distance to top-left corner of the image
px = event.pos().x()
py = self.img.height() - event.pos().y()
print(f"px = {px}, py = {py}")
if event.button() == QtCore.Qt.MouseButton.LeftButton:
# self.drag_line_start = (px, py)
# elif event == cv2.EVENT_LBUTTONUP:
2020-11-14 14:01:01 +00:00
self.drag_line_end = (px, py)
2020-11-25 20:19:56 +00:00
self.drag_line_start = (px, py)
2020-11-14 14:01:01 +00:00
target_pos = self.compute_clicked_position(self.drag_line_start[0], self.drag_line_start[1])
if self.drag_line_start != self.drag_line_end:
# compute target angle for clicked position
facing_pos = self.compute_clicked_position(px, py)
v = facing_pos - target_pos
target_angle = math.atan2(v[1], v[0])
else:
2020-11-14 14:01:01 +00:00
# determine angle from previously clicked pos (= self.drag_line_end)
if self.previous_click is not None:
previous_pos = self.compute_clicked_position(self.previous_click[0], self.previous_click[1])
v = target_pos - previous_pos
target_angle = math.atan2(v[1], v[0])
else:
target_angle = 0.0
target = np.array([target_pos[0], target_pos[1], target_angle])
print(target)
self.previous_click = (px, py)
self.event_queue.put(('click', {'x': target[0], 'y': target[1], 'angle': target[2]}))
self.drag_line_start = None
elif event == cv2.EVENT_MOUSEMOVE:
if self.drag_line_start is not None:
self.drag_line_end = (px, py)
2020-10-15 20:41:30 +00:00
2020-11-25 20:19:56 +00:00
def process_frame(self):
draw_markers=True
draw_marker_coordinate_system=False
#cv2.setMouseCallback('RoboRally', self.mouse_callback)
2020-11-14 15:39:53 +00:00
fps_display_rate = 1 # displays the frame rate every 1 second
2020-11-25 20:19:56 +00:00
if self.pipeline:
frames = self.pipeline.wait_for_frames()
color_frame = frames.get_color_frame()
# if not color_frame:
# continue
# Convert images to numpy arrays
color_image = np.asanyarray(color_frame.get_data())
else:
# Capture frame-by-frame
ret, color_image = self.cv_camera.read()
t_image = time.time()
gray = cv2.cvtColor(color_image, cv2.COLOR_BGR2GRAY)
if self.invert_grayscale:
cv2.bitwise_not(gray, gray)
# run aruco marker detection
detected_markers = self.detector.detect(gray)
# extract data for detected markers
detected_marker_data = {}
for marker in detected_markers:
if marker.id >= 0:
detected_marker_data[marker.id] = {'marker_center': marker.getCenter()}
if marker.id in self.corner_marker_ids.values():
marker.calculateExtrinsics(0.075, self.camparam)
else:
2020-11-25 20:19:56 +00:00
marker.calculateExtrinsics(0.07, self.camparam)
detected_marker_data[marker.id]['Rvec'] = marker.Rvec
detected_marker_data[marker.id]['Tvec'] = marker.Tvec
if draw_markers:
marker.draw(color_image, np.array([255, 255, 255]), 2, True)
if draw_marker_coordinate_system:
aruco.CvDrawingUtils.draw3dAxis(color_image, self.camparam, marker.Rvec, marker.Tvec, .1)
# store data
for marker_id, data in detected_marker_data.items():
self.update_estimate(marker_id, data['marker_center'], data['Rvec'], data['Tvec'], t_image)
# draw grid
if self.draw_grid:
color_image = self.draw_grid_lines(color_image, detected_marker_data)
color_image = self.draw_robot_pos(color_image, detected_marker_data)
# draw drag
if self.drag_line_start is not None and self.drag_line_end is not None:
color_image = cv2.line(color_image, self.drag_line_start, self.drag_line_end, color=(0, 0, 255), thickness=2)
# compute frame rate
self.fps_counter += 1
delta_t = time.time() - self.fps_start_time
if delta_t > fps_display_rate:
self.fps_counter = 0
self.fps_start_time = time.time()
color_image = cv2.putText(color_image, f"fps = {(self.fps_counter / delta_t):.2f}", (10, 25), cv2.FONT_HERSHEY_PLAIN, 2,
(0, 255, 255),
thickness=2)
# Show images
color_image_rgb = cv2.cvtColor(color_image, cv2.COLOR_BGR2RGB) # convert to RGB
self.img.setImage(np.transpose(np.flipud(color_image_rgb), axes=(1, 0, 2)))
QtCore.QTimer.singleShot(1, self.process_frame)
def handleKeyPressEvent(self, ev):
key = ev.key()
self.event_queue.put(('key', key))
if key == QtCore.Qt.Key_G:
self.draw_grid = not self.draw_grid
elif key == QtCore.Qt.Key_Q:
if self.pipeline is not None:
# Stop streaming
self.pipeline.stop()
2020-11-25 20:19:56 +00:00
self.app.quit()
elif key == QtCore.Qt.Key_X:
if self.pipeline is not None:
color_sensor = self.pipeline.get_active_profile().get_device().query_sensors()[1]
if color_sensor.get_option(rs.option.enable_auto_exposure) == 1.0:
color_sensor.set_option(rs.option.enable_auto_exposure, False)
print("auto exposure OFF")
else:
color_sensor.set_option(rs.option.enable_auto_exposure, True)
print("auto exposure ON")
elif key == QtCore.Qt.Key_I:
self.invert_grayscale = not self.invert_grayscale
2020-10-24 19:08:20 +00:00
def update_estimate(self, marker_id, pixel_coord_center, rvec, tvec, t_image):
# update the marker estimate with new data
2020-10-24 19:08:20 +00:00
if marker_id in self.corner_marker_ids.values():
# for corner markers we compute the mean of all measurements s.t. the position stabilizes over time
# (we assume the markers do not move)
# get corresponding corner to the detected marker
2020-10-24 19:08:20 +00:00
corner = next(filter(lambda key: self.corner_marker_ids[key] == marker_id, self.corner_marker_ids.keys()))
old_estimate_x = self.corner_estimates[corner]['x']
old_estimate_y = self.corner_estimates[corner]['y']
n_estimates = self.corner_estimates[corner]['n_estimates']
x = tvec[0][0]
y = -tvec[1][0] # flip y coordinate
if not any([old_estimate_x is None, old_estimate_y is None]):
new_estimate_x = (n_estimates * old_estimate_x + x) / (n_estimates + 1) # weighted update
new_estimate_y = (n_estimates * old_estimate_y + y) / (n_estimates + 1)
else:
2020-10-24 19:08:20 +00:00
new_estimate_x = x # first estimate
new_estimate_y = y
self.corner_estimates[corner]['t'] = t_image
self.corner_estimates[corner]['x'] = new_estimate_x
self.corner_estimates[corner]['y'] = new_estimate_y
self.corner_estimates[corner]['n_estimates'] = n_estimates + 1
self.corner_estimates[corner]['pixel_coordinate'] = pixel_coord_center
2020-10-24 19:08:20 +00:00
elif marker_id in self.robot_marker_ids:
# for robot markers we extract x and y position as well as the angle
# here we could also implement a filter
x = tvec[0][0]
y = -tvec[1][0] # flip y coordinate
# compute angle
rot_mat, _ = cv2.Rodrigues(rvec)
pose_mat = cv2.hconcat((rot_mat, tvec))
_, _, _, _, _, _, euler_angles = cv2.decomposeProjectionMatrix(pose_mat)
angle = -euler_angles[2][0] * np.pi / 180.0
2020-11-14 14:01:01 +00:00
self.robot_marker_estimates[marker_id] = {'t': float(t_image), 'x': float(x), 'y': float(y), 'angle': float(angle)}
def all_corners_detected(self):
# checks if all corner markers have been detected at least once
return not any([estimate['n_estimates'] == 0 for estimate in self.corner_estimates.values()])
def all_robots_detected(self):
# checks if all robot markers have been detected at least once
2020-10-24 19:08:20 +00:00
return not any([estimate['t'] is None for estimate in self.robot_marker_estimates.values()])
def get_pos_from_grid_point(self, x, y, orientation=None):
"""
returns the position for the given grid point based on the current corner estimates
:param x: x position on the grid ( 0 &le x &lt number of grid columns)
:param y: y position on the grid ( 0 &le x &lt number of grid rows)
:param orientation: (optional) orientation in the given grid cell (one of ^, >, v, &lt )
:return: numpy array with corresponding real world x- and y-position
if orientation was specified the array also contains the matching angle for the orientation
"""
2020-10-24 19:08:20 +00:00
assert 0 <= x < self.grid_columns
assert 0 <= y < self.grid_rows
assert self.all_corners_detected()
# compute column line
a = np.array([self.corner_estimates['a']['x'], self.corner_estimates['a']['y']])
b = np.array([self.corner_estimates['b']['x'], self.corner_estimates['b']['y']])
c = np.array([self.corner_estimates['c']['x'], self.corner_estimates['c']['y']])
d = np.array([self.corner_estimates['d']['x'], self.corner_estimates['d']['y']])
x_frac = (x + 0.5) / self.grid_columns
y_frac = (y + 0.5) / self.grid_rows
vab = b - a
vdc = c - d
column_line_top = a + x_frac * vab
column_line_bottom = d + x_frac * vdc
vad = d - a
vbc = c - b
row_line_top = a + y_frac * vad
row_line_bottom = b + y_frac * vbc
column_line = LineString([column_line_top, column_line_bottom])
row_line = LineString([row_line_top, row_line_bottom])
int_pt = column_line.intersection(row_line)
point_of_intersection = np.array([int_pt.x, int_pt.y])
if orientation is not None:
# compute angle corresponding to the orientation w.r.t. the grid
# TODO: test this code
angle_ab = np.arctan2(vab[1], vab[0])
angle_dc = np.arctan2(vdc[1], vdc[0])
angle_ad = np.arctan2(vad[1], vad[0])
angle_bc = np.arctan2(vbc[1], vbc[0])
angle = 0.0
if orientation == '>':
angle = y_frac * angle_ab + (1 - y_frac) * angle_dc
elif orientation == '<':
2020-10-18 14:58:32 +00:00
angle = y_frac * angle_ab + (1 - y_frac) * angle_dc + np.pi
elif orientation == 'v':
angle = x_frac * angle_ad + (1 - x_frac) * angle_bc
elif orientation == '^':
angle = x_frac * angle_ad + (1 - x_frac) * angle_bc + np.pi
return np.array((point_of_intersection[0], point_of_intersection[1], angle))
else:
return point_of_intersection
def get_grid_point_from_pos(self):
# TODO return the nearest grid point for the given position estimate
pass
def print_corner_estimates(self):
for key, value in self.corner_estimates.items():
if value['n_estimates'] != 0:
print(f"corner marker {key} at pos ({value['x']},{value['y']})")
def draw_corner_line(self, frame, corner_1, corner_2):
# draws a line between the given markers onto the given frame
corner_1_center = self.corner_estimates[corner_1]['pixel_coordinate']
corner_2_center = self.corner_estimates[corner_2]['pixel_coordinate']
if corner_1_center is not None and corner_2_center is not None:
frame = cv2.line(frame, tuple(corner_1_center), tuple(corner_2_center), color=(0, 0, 255), thickness=2)
return frame
def draw_grid_lines(self, frame, detected_marker_data):
# draws a grid onto the given frame
frame = self.draw_corner_line(frame, 'a', 'b')
frame = self.draw_corner_line(frame, 'b', 'c')
frame = self.draw_corner_line(frame, 'c', 'd')
frame = self.draw_corner_line(frame, 'd', 'a')
if not any([estimate['pixel_coordinate'] is None for estimate in self.corner_estimates.values()]):
# compute outlines of board
a = self.corner_estimates['a']['pixel_coordinate']
b = self.corner_estimates['b']['pixel_coordinate']
c = self.corner_estimates['c']['pixel_coordinate']
d = self.corner_estimates['d']['pixel_coordinate']
# draw vertical lines
vab = b - a
vdc = c - d
2020-10-24 19:08:20 +00:00
for x in range(1, self.grid_columns):
column_line_top = a + x / self.grid_columns * vab
column_line_bottom = d + x / self.grid_columns * vdc
frame = cv2.line(frame, tuple(column_line_top), tuple(column_line_bottom), color=(0, 255, 0),
2020-10-24 19:08:20 +00:00
thickness=1)
# draw horizontal lines
vad = d - a
vbc = c - b
for y in range(1, self.grid_rows):
row_line_top = a + y / self.grid_rows * vad
row_line_bottom = b + y / self.grid_rows * vbc
frame = cv2.line(frame, tuple(row_line_top), tuple(row_line_bottom), color=(0, 255, 0),
2020-10-24 19:08:20 +00:00
thickness=1)
return frame
2020-10-24 19:08:20 +00:00
def get_robot_state_estimate(self, marker_id):
if marker_id in self.robot_marker_estimates:
if self.robot_marker_estimates[marker_id]['t'] is not None:
return np.array([self.robot_marker_estimates[marker_id]['x'],
self.robot_marker_estimates[marker_id]['y'],
self.robot_marker_estimates[marker_id]['angle']])
else:
2020-10-24 19:08:20 +00:00
print(f"error: no estimate available for robot {marker_id}")
return None
else:
2020-10-24 19:08:20 +00:00
print(f"error: invalid robot id {marker_id}")
return None
def draw_robot_pos(self, frame, detected_marker_data):
# draws information about the robot positions onto the given frame
robot_corners_pixel_coords = {}
2020-10-24 19:08:20 +00:00
for marker_id, estimate in self.robot_marker_estimates.items():
if marker_id in detected_marker_data.keys():
robot_corners_pixel_coords[marker_id] = tuple(detected_marker_data[marker_id]['marker_center'])
2020-10-24 19:08:20 +00:00
for marker_id, coord in robot_corners_pixel_coords.items():
x = self.robot_marker_estimates[marker_id]['x']
y = self.robot_marker_estimates[marker_id]['y']
angle = self.robot_marker_estimates[marker_id]['angle']
#frame = cv2.putText(frame, "pos = ({:5.3f}, {:5.3f}), ang = {:5.3f}".format(x, y, angle), coord,
# cv2.FONT_HERSHEY_SIMPLEX, 0.50, (0, 255, 0))
frame = cv2.putText(frame, f"{marker_id}", coord, cv2.FONT_HERSHEY_PLAIN, 2, (0, 255, 255), thickness=4)
return frame
if __name__ == "__main__":
2020-11-25 20:19:56 +00:00
estimator = ArucoEstimator(use_realsense=False, robot_marker_ids=[11, 12, 13, 14])
estimator.process_frame()
import sys
if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'):
QtGui.QApplication.instance().exec_()
#estimator.run_tracking(draw_markers=True, invert_grayscale=True)