import numpy as np import time from casadi_opt import OpenLoopSolver class MPCController: def __init__(self, estimator): self.t = time.time() self.estimator = estimator self.controlling = False self.mstep = 2 self.ols = OpenLoopSolver(N=20, T=1.0) self.ols.setup() self.dt = self.ols.T / self.ols.N # integrator self.omega_max = 5.0 self.control_scaling = 0.4 def move_to_pos(self, target_pos, robot, near_target_counter=5): near_target = 0 while near_target < near_target_counter: while not self.estimator.event_queue.empty(): event = self.estimator.event_queue.get() print("event: ", event) if event[0] == 'click': pass elif event[0] == 'key': key = event[1] if key == 84: # arrow up self.controlling = True self.t = time.time() elif key == 82: # arrow down self.controlling = False robot.send_cmd() elif key == 48: # 0 target_pos = np.array([0.0, 0.0, 0.0]) elif key == 43: # + self.control_scaling += 0.1 self.control_scaling = min(self.control_scaling, 1.0) print("control scaling = ", self.control_scaling) elif key == 45: # - self.control_scaling -= 0.1 self.control_scaling = max(self.control_scaling, 0.1) print("control scaling = ", self.control_scaling) elif key == 113: print("quit!") self.controlling = False robot.send_cmd() return elif key == 27: # escape print("quit!") self.controlling = False robot.send_cmd() return x_pred = self.get_measurement(robot.id) if x_pred is not None: error_pos = np.linalg.norm(x_pred[0:2] - target_pos[0:2]) angles_unwrapped = np.unwrap([x_pred[2], target_pos[2]]) # unwrap angle to avoid jump in data error_ang = np.abs(angles_unwrapped[0] - angles_unwrapped[1]) # print("error pos = ", error_pos) # print("error_pos = {}, error_ang = {}".format(error_pos, error_ang)) # if error_pos > 0.075 or error_ang > 0.35: if error_pos > 0.05 or error_ang > 0.1: # solve mpc open loop problem res = self.ols.solve(x_pred, target_pos) # us1 = res[0] # us2 = res[1] us1 = res[0] * self.control_scaling us2 = res[1] * self.control_scaling # print("u = {}", (us1, us2)) # print("---------------- mpc solution took {} seconds".format(tmpc_end - tmpc_start)) dt_mpc = time.time() - self.t if dt_mpc < self.dt: # wait until next control can be applied # print("sleeping for {} seconds...".format(self.dt - dt_mpc)) time.sleep(self.dt - dt_mpc) else: us1 = [0] * self.mstep us2 = [0] * self.mstep near_target += 1 # send controls to the robot for i in range(0, self.mstep): # option to use multistep mpc if len(range) > 1 u1 = us1[i] u2 = us2[i] robot.send_cmd(u1, u2) if i < self.mstep: time.sleep(self.dt) self.t = time.time() # save time the most recent control was applied else: print("robot not detected yet!") def interactive_control(self, robots): controlled_robot_number = 0 robot = robots[controlled_robot_number] target_pos = np.array([0.0, 0.0, 0.0]) running = True while running: # handle events from opencv window while not self.estimator.event_queue.empty(): event = self.estimator.event_queue.get() print("event: ", event) if event[0] == 'click': target_pos = event[1] elif event[0] == 'key': key = event[1] if key == 32: # arrow up self.controlling = not self.controlling if not self.controlling: print("disable control") robot.send_cmd() # stop robot else: print("enable control") self.t = time.time() elif key == 48: # 0 target_pos = np.array([0.0, 0.0, 0.0]) # TODO: use center of board for target pos elif key == 43: # + self.control_scaling += 0.1 self.control_scaling = min(self.control_scaling, 1.0) print("control scaling = ", self.control_scaling) elif key == 45: # - self.control_scaling -= 0.1 self.control_scaling = max(self.control_scaling, 0.1) print("control scaling = ", self.control_scaling) elif key == 9: # TAB # switch controlled robot robot.send_cmd() # stop current robot controlled_robot_number = (controlled_robot_number + 1) % len(robots) robot = robots[controlled_robot_number] print(f"controlled robot: {robot.id}") elif key == 113 or key == 27: # q or ESCAPE print("quit!") self.controlling = False robot.send_cmd() return if self.controlling: # measure state x_pred = self.get_measurement(robot.id) # print(np.linalg.norm(x_pred-target_pos)) # solve mpc open loop problem res = self.ols.solve(x_pred, target_pos) us1 = res[0] * self.control_scaling us2 = res[1] * self.control_scaling dt_mpc = time.time() - self.t if dt_mpc < self.dt: # wait until next control can be applied time.sleep(self.dt - dt_mpc) # send controls to the robot for i in range(0, self.mstep): # option to use multistep mpc if len(range) > 1 u1 = us1[i] u2 = us2[i] robot.send_cmd(u1, u2) if i < self.mstep: time.sleep(self.dt) self.t = time.time() # save time the most recent control was applied def get_measurement(self, robot_id): return self.estimator.get_robot_state_estimate(robot_id)