from casadi import * # look at: https://github.com/casadi/casadi/blob/master/docs/examples/python/vdp_indirect_multiple_shooting.py class OpenLoopSolver: def __init__(self, N=60, T=6.0): self.T = T self.N = N def solve(self, x0): x = SX.sym('x') y = SX.sym('y') theta = SX.sym('theta') state = vertcat(x, y, theta) r = 0.03 R = 0.05 d = 0.02 omegar = SX.sym('omegar') omegal = SX.sym('omegal') control = vertcat(omegar, omegal) # model equation f1 = (r / 2 * cos(theta) - r * d / (2 * R) * sin(theta)) * omegar + (r / 2 * cos(theta) + r * d / (2 * R) * sin( theta)) * omegal f2 = (r / 2 * sin(theta) + r * d / (2 * R) * cos(theta)) * omegar + (r / 2 * sin(theta) - r * d / (2 * R) * cos( theta)) * omegal f3 = r / (2 * R) * omegar - r / (2 * R) * omegal xdot = vertcat(f1, f2, f3) f = Function('f', [x, y, theta, omegar, omegal], [f1, f2, f3]) print("f = {}".format(f)) # cost functional L = x ** 2 + y ** 2 + 1e-2 * theta ** 2 + 1e-4 * (omegar ** 2 + omegal ** 2) # Fixed step Runge-Kutta 4 integrator M = 4 # RK4 steps per interval DT = self.T / self.N / M print("DT = {}".format(DT)) f = Function('f', [state, control], [xdot, L]) X0 = MX.sym('X0', 3) U = MX.sym('U', 2) X = X0 Q = 0 runge_kutta = True if runge_kutta: for j in range(M): k1, k1_q = f(X, U) k2, k2_q = f(X + DT / 2 * k1, U) k3, k3_q = f(X + DT / 2 * k2, U) k4, k4_q = f(X + DT * k3, U) X = X + DT / 6 * (k1 + 2 * k2 + 2 * k3 + k4) Q = Q + DT / 6 * (k1_q + 2 * k2_q + 2 * k3_q + k4_q) else: DT = self.T / self.N k1, k1_q = f(X, U) X = X + DT * k1 Q = Q + DT * k1_q F = Function('F', [X0, U], [X, Q], ['x0', 'p'], ['xf', 'qf']) # F_euler = Function('F_euler', [X0, U], [Xeuler, Qeuler], ['x0', 'p'], ['xf', 'qf']) Fk = F(x0=[0.2, 0.3, 0.0], p=[-1.1, 1.1]) print(Fk['xf']) print(Fk['qf']) # Start with an empty NLP w = [] w0 = [] lbw = [] ubw = [] J = 0 g = [] lbg = [] ubg = [] # Formulate the NLP Xk = MX(x0) for k in range(self.N): # New NLP variable for the control U1k = MX.sym('U1_' + str(k), 2) # U2k = MX.sym('U2_' + str(k)) w += [U1k] lbw += [-10, -10] ubw += [10, 10] w0 += [0, 0] # Integrate till the end of the interval Fk = F(x0=Xk, p=U1k) Xk = Fk['xf'] J = J + Fk['qf'] # Add inequality constraint # g += [Xk[1]] # lbg += [-.0] # ubg += [inf] # Create an NLP solver prob = {'f': J, 'x': vertcat(*w), 'g': vertcat(*g)} self.solver = nlpsol('solver', 'ipopt', prob) # Solve the NLP sol = self.solver(x0=w0, lbx=lbw, ubx=ubw, lbg=lbg, ubg=ubg) w_opt = sol['x'] # Plot the solution u_opt = w_opt x_opt = [x0] for k in range(self.N): Fk = F(x0=x_opt[-1], p=u_opt[2*k:2*k+2]) x_opt += [Fk['xf'].full()] x1_opt = [r[0] for r in x_opt] x2_opt = [r[1] for r in x_opt] x3_opt = [r[2] for r in x_opt] tgrid = [self.T/self.N*k for k in range(self.N+1)] import matplotlib.pyplot as plt plt.figure(2) plt.clf() plt.plot(tgrid, x1_opt, '--') plt.plot(tgrid, x2_opt, '-') plt.plot(tgrid, x3_opt, '*') #plt.step(tgrid, vertcat(DM.nan(1), u_opt), '-.') plt.xlabel('t') plt.legend(['x1','x2','x3','u']) plt.grid() #plt.show() #return # alternative solution using multiple shooting (way faster!) opti = Opti() # Optimization problem # ---- decision variables --------- X = opti.variable(3,self.N+1) # state trajectory Q = opti.variable(1,self.N+1) # state trajectory posx = X[0,:] posy = X[1,:] angle = X[2,:] U = opti.variable(2,self.N) # control trajectory (throttle) #T = opti.variable() # final time # ---- objective --------- #opti.minimize(T) # race in minimal time # ---- dynamic constraints -------- #f = lambda x,u: vertcat(f1, f2, f3) # dx/dt = f(x,u) dt = self.T/self.N # length of a control interval for k in range(self.N): # loop over control intervals # Runge-Kutta 4 integration k1, k1_q = f(X[:,k], U[:,k]) k2, k2_q = f(X[:,k]+dt/2*k1, U[:,k]) k3, k3_q = f(X[:,k]+dt/2*k2, U[:,k]) k4, k4_q = f(X[:,k]+dt*k3, U[:,k]) x_next = X[:,k] + dt/6*(k1+2*k2+2*k3+k4) q_next = Q[:,k] + dt/6*(k1_q + 2 * k2_q + 2 * k3_q + k4_q) opti.subject_to(X[:,k+1]==x_next) # close the gaps opti.subject_to(Q[:,k+1]==q_next) # close the gaps opti.minimize(Q[:,self.N]) # ---- path constraints ----------- #limit = lambda pos: 1-sin(2*pi*pos)/2 #opti.subject_to(speed<=limit(pos)) # track speed limit opti.subject_to(opti.bounded(-10,U,10)) # control is limited # ---- boundary conditions -------- opti.subject_to(posx[0]==x0[0]) # start at position 0 ... opti.subject_to(posy[0]==x0[1]) # ... from stand-still opti.subject_to(angle[0]==x0[2]) # finish line at position 1 #opti.subject_to(speed[-1]==0) # .. with speed 0 opti.subject_to(Q[:,0]==0.0) # ---- misc. constraints ---------- #opti.subject_to(X[1,:]>=0) # Time must be positive #opti.subject_to(X[2,:]<=4) # Time must be positive #opti.subject_to(X[2,:]>=-2) # Time must be positive # avoid obstacle #r = 0.25 #p = (0.5, 0.5) #for k in range(self.N): # opti.subject_to((X[0,k]-p[0])**2 + (X[1,k]-p[1])**2 > r**2) # pass # ---- initial values for solver --- #opti.set_initial(speed, 1) #opti.set_initial(T, 1) # ---- solve NLP ------ opti.solver("ipopt") # set numerical backend sol = opti.solve() # actual solve #x0 = sol.value(opti.x) #lam_g0 = sol.value(opti.lam_g) #opti.set_initial(opti.lam_g, lam_g0) #opti.set_initial(opti.x, x0) #opti.solve() from pylab import plot, step, figure, legend, show, spy plot(sol.value(posx),label="posx") plot(sol.value(posy),label="posy") plot(sol.value(angle),label="angle") plt.figure(3) plot(sol.value(posx), sol.value(posy)) ax = plt.gca() circle = plt.Circle(p, r) ax.add_artist(circle) #plot(limit(sol.value(pos)),'r--',label="speed limit") #step(range(N),sol.value(U),'k',label="throttle") legend(loc="upper left") plt.show() pass # linearization # A = zeros(states.shape[0], states.shape[0]) # for i in range(f.shape[0]): # for j in range(states.shape[0]): # A[i,j] = diff(f[i,0], states[j]) # Alin = A.subs([(theta,0), (omegar,0), (omegal,0)]) # print("A = {}".format(Alin)) # B = zeros(f.shape[0], controls.shape[0]) # for i in range(f.shape[0]): # for j in range(controls.shape[0]): # B[i,j] = diff(f[i,0], controls[j]) # print("B = {}".format(B)) # dfdtheta = diff(f, theta) #print(dfdtheta.doit()) # takeaway: linearization is not helpful, because the linearized system is not stabilizable # -> alternative: use nonlinear control method