forked from Telos4/RoboRally
172 lines
7.1 KiB
Python
172 lines
7.1 KiB
Python
import numpy as np
|
|
import time
|
|
|
|
from casadi_opt import OpenLoopSolver
|
|
|
|
class MPCController:
|
|
def __init__(self, estimator):
|
|
self.t = time.time()
|
|
|
|
self.estimator = estimator
|
|
self.controlling = False
|
|
|
|
self.mstep = 2
|
|
self.ols = OpenLoopSolver(N=20, T=1.0)
|
|
self.ols.setup()
|
|
self.dt = self.ols.T / self.ols.N
|
|
|
|
# integrator
|
|
self.omega_max = 5.0
|
|
self.control_scaling = 0.2
|
|
|
|
def move_to_pos(self, target_pos, robot, near_target_counter=5):
|
|
near_target = 0
|
|
while near_target < near_target_counter:
|
|
while not self.estimator.event_queue.empty():
|
|
event = self.estimator.event_queue.get()
|
|
print("event: ", event)
|
|
if event[0] == 'click':
|
|
pass
|
|
elif event[0] == 'key':
|
|
key = event[1]
|
|
|
|
if key == 84: # arrow up
|
|
self.controlling = True
|
|
self.t = time.time()
|
|
elif key == 82: # arrow down
|
|
self.controlling = False
|
|
robot.send_cmd()
|
|
elif key == 48: # 0
|
|
target_pos = np.array([0.0,0.0,0.0])
|
|
elif key == 43: # +
|
|
self.control_scaling += 0.1
|
|
self.control_scaling = min(self.control_scaling, 1.0)
|
|
print("control scaling = ", self.control_scaling)
|
|
elif key == 45: # -
|
|
self.control_scaling -= 0.1
|
|
self.control_scaling = max(self.control_scaling, 0.1)
|
|
print("control scaling = ", self.control_scaling)
|
|
elif key == 113:
|
|
print("quit!")
|
|
self.controlling = False
|
|
robot.send_cmd()
|
|
return
|
|
elif key == 27: # escape
|
|
print("quit!")
|
|
self.controlling = False
|
|
robot.send_cmd()
|
|
return
|
|
|
|
x_pred = self.get_measurement(robot.id)
|
|
|
|
error_pos = np.linalg.norm(x_pred[0:2] - target_pos[0:2])
|
|
angles_unwrapped = np.unwrap([x_pred[2], target_pos[2]]) # unwrap angle to avoid jump in data
|
|
error_ang = np.abs(angles_unwrapped[0] - angles_unwrapped[1])
|
|
#print("error pos = ", error_pos)
|
|
#print("error_pos = {}, error_ang = {}".format(error_pos, error_ang))
|
|
|
|
#if error_pos > 0.075 or error_ang > 0.35:
|
|
if error_pos > 0.05 or error_ang > 0.2:
|
|
# solve mpc open loop problem
|
|
res = self.ols.solve(x_pred, target_pos)
|
|
|
|
#us1 = res[0]
|
|
#us2 = res[1]
|
|
us1 = res[0] * self.control_scaling
|
|
us2 = res[1] * self.control_scaling
|
|
#print("u = {}", (us1, us2))
|
|
|
|
tmpc_end = time.time()
|
|
#print("---------------- mpc solution took {} seconds".format(tmpc_end - tmpc_start))
|
|
dt_mpc = time.time() - self.t
|
|
if dt_mpc < self.dt: # wait until next control can be applied
|
|
#print("sleeping for {} seconds...".format(self.dt - dt_mpc))
|
|
time.sleep(self.dt - dt_mpc)
|
|
else:
|
|
us1 = [0] * self.mstep
|
|
us2 = [0] * self.mstep
|
|
near_target += 1
|
|
|
|
# send controls to the robot
|
|
for i in range(0, self.mstep): # option to use multistep mpc if len(range) > 1
|
|
u1 = us1[i]
|
|
u2 = us2[i]
|
|
robot.send_cmd(u1, u2)
|
|
if i < self.mstep:
|
|
time.sleep(self.dt)
|
|
self.t = time.time() # save time the most recent control was applied
|
|
|
|
def interactive_control(self, robots):
|
|
controlled_robot_number = 0
|
|
robot = robots[controlled_robot_number]
|
|
|
|
target_pos = np.array([0.0, 0.0, 0.0])
|
|
|
|
running = True
|
|
while running:
|
|
# handle events from opencv window
|
|
while not self.estimator.event_queue.empty():
|
|
event = self.estimator.event_queue.get()
|
|
print("event: ", event)
|
|
if event[0] == 'click':
|
|
target_pos = event[1]
|
|
elif event[0] == 'key':
|
|
key = event[1]
|
|
|
|
if key == 32: # arrow up
|
|
self.controlling = not self.controlling
|
|
if not self.controlling:
|
|
print("disable control")
|
|
robot.send_cmd() # stop robot
|
|
else:
|
|
print("enable control")
|
|
self.t = time.time()
|
|
elif key == 48: # 0
|
|
target_pos = np.array([0.0, 0.0, 0.0]) # TODO: use center of board for target pos
|
|
elif key == 43: # +
|
|
self.control_scaling += 0.1
|
|
self.control_scaling = min(self.control_scaling, 1.0)
|
|
print("control scaling = ", self.control_scaling)
|
|
elif key == 45: # -
|
|
self.control_scaling -= 0.1
|
|
self.control_scaling = max(self.control_scaling, 0.1)
|
|
print("control scaling = ", self.control_scaling)
|
|
elif key == 9: # TAB
|
|
# switch controlled robot
|
|
robot.send_cmd() # stop current robot
|
|
controlled_robot_number = (controlled_robot_number + 1) % len(robots)
|
|
robot = robots[controlled_robot_number]
|
|
print(f"controlled robot: {robot.id}")
|
|
elif key == 113 or key == 27: # q or ESCAPE
|
|
print("quit!")
|
|
self.controlling = False
|
|
robot.send_cmd()
|
|
return
|
|
|
|
if self.controlling:
|
|
# measure state
|
|
x_pred = self.get_measurement(robot.id)
|
|
|
|
#print(np.linalg.norm(x_pred-target_pos))
|
|
|
|
# solve mpc open loop problem
|
|
res = self.ols.solve(x_pred, target_pos)
|
|
|
|
us1 = res[0] * self.control_scaling
|
|
us2 = res[1] * self.control_scaling
|
|
|
|
dt_mpc = time.time() - self.t
|
|
if dt_mpc < self.dt: # wait until next control can be applied
|
|
time.sleep(self.dt - dt_mpc)
|
|
|
|
# send controls to the robot
|
|
for i in range(0, self.mstep): # option to use multistep mpc if len(range) > 1
|
|
u1 = us1[i]
|
|
u2 = us2[i]
|
|
robot.send_cmd(u1, u2)
|
|
if i < self.mstep:
|
|
time.sleep(self.dt)
|
|
self.t = time.time() # save time the most recent control was applied
|
|
|
|
def get_measurement(self, robot_id):
|
|
return np.array(self.estimator.get_robot_state_estimate(robot_id)) |