forked from Telos4/RoboRally
406 lines
15 KiB
Python
406 lines
15 KiB
Python
# startup:
|
|
# roscore -> start ros
|
|
# rosparam set cv_camera/device_id 0 -> set appropriate camera device
|
|
# rosrun cv_camera cv_camera_node -> start the camera
|
|
# roslaunch aruco_detect aruco_detect.launch camera:=cv_camera image:=image_raw dictionary:=16 transport:= fiducial_len:=0.1 # aruco marker detection
|
|
# python fiducial_to_2d_pos_angle.py -> compute position and angle of markers in 2d plane
|
|
|
|
import sys
|
|
import rospy
|
|
import pygame
|
|
import numpy as np
|
|
import socket
|
|
import scipy.integrate
|
|
import copy
|
|
|
|
import threading
|
|
from copy import deepcopy
|
|
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.animation as anim
|
|
import matplotlib.patches as patch
|
|
|
|
from shapely.geometry import Polygon
|
|
|
|
import time
|
|
|
|
from casadi_opt import OpenLoopSolver
|
|
|
|
#from marker_pos_angle.msg import id_pos_angle
|
|
|
|
from collections import OrderedDict
|
|
|
|
from argparse import ArgumentParser
|
|
|
|
import opencv_viewer_example
|
|
|
|
MSGLEN = 64
|
|
def myreceive(sock):
|
|
chunks = []
|
|
bytes_recd = 0
|
|
while bytes_recd < MSGLEN:
|
|
chunk = sock.recv(1)
|
|
if chunk == b'':
|
|
raise RuntimeError("socket connection broken")
|
|
chunks.append(chunk)
|
|
bytes_recd = bytes_recd + len(chunk)
|
|
|
|
if chunks[-1] == b'\n':
|
|
break
|
|
|
|
return b''.join(chunks)
|
|
|
|
|
|
class Robot:
|
|
# dictionary mapping the current orientation and a turn command to the resulting orientation
|
|
resulting_orientation = {
|
|
'^': {'turn left': '<', 'turn right': '>', 'turn around': 'v'},
|
|
'>': {'turn left': '^', 'turn right': 'v', 'turn around': '<'},
|
|
'v': {'turn left': '>', 'turn right': '<', 'turn around': '^'},
|
|
'<': {'turn left': 'v', 'turn right': '^', 'turn around': '>'},
|
|
}
|
|
|
|
# dictionary mapping an orientation to its opposite
|
|
opposites = {'^': 'v', '>': '<', 'v': '^', '<': '>'}
|
|
|
|
def __init__(self, id, ip, x=0, y=0, orientation='>'):
|
|
self.x = x
|
|
self.y = y
|
|
self.orientation = orientation
|
|
|
|
self.id = id
|
|
|
|
self.pos = None
|
|
self.euler = None
|
|
|
|
self.ip = ip
|
|
self.socket = socket.socket()
|
|
|
|
# variables for measurements
|
|
self.tms_0 = None
|
|
self.xm_0 = None
|
|
self.tms = None
|
|
self.xms = None
|
|
|
|
# currently active control
|
|
self.u1 = 0.0
|
|
self.u2 = 0.0
|
|
|
|
def get_neighbor_coordinates(self, direction):
|
|
# get the coordinates of the neighboring tile in the given direction
|
|
if direction == '^':
|
|
return (self.x, self.y - 1)
|
|
elif direction == '>':
|
|
return (self.x + 1, self.y)
|
|
elif direction == 'v':
|
|
return (self.x, self.y + 1)
|
|
elif direction == '<':
|
|
return (self.x - 1, self.y)
|
|
else:
|
|
print("error: unknown direction")
|
|
sys.exit(1)
|
|
|
|
def move(self, type):
|
|
if type == 'forward':
|
|
target_tile = self.get_neighbor_coordinates(self.orientation)
|
|
self.x = target_tile[0]
|
|
self.y = target_tile[1]
|
|
elif type == 'backward':
|
|
opposite_orientation = Robot.opposites[self.orientation]
|
|
target_tile = self.get_neighbor_coordinates(opposite_orientation)
|
|
self.x = target_tile[0]
|
|
self.y = target_tile[1]
|
|
elif 'turn' in type:
|
|
self.orientation = Robot.resulting_orientation[self.orientation][type]
|
|
else:
|
|
print("error: invalid move")
|
|
sys.exit(1)
|
|
|
|
def connect(self):
|
|
# connect to robot
|
|
try:
|
|
print("connecting to robot {} with ip {} ...".format(self.id, self.ip))
|
|
#self.socket.connect((self.ip, 1234)) # connect to robot
|
|
print("connected!")
|
|
except socket.error:
|
|
print("could not connect to robot {} with ip {}".format(self.id, self.ip))
|
|
sys.exit(1)
|
|
|
|
def __str__(self):
|
|
return self.__repr__()
|
|
|
|
def __repr__(self):
|
|
return f"x: {self.x}, y: {self.y}, orienation: {self.orientation}"
|
|
|
|
def f_ode(t, x, u):
|
|
# dynamical model of the two-wheeled robot
|
|
# TODO: find exact values for these parameters
|
|
r = 0.03
|
|
R = 0.05
|
|
d = 0.02
|
|
|
|
theta = x[2]
|
|
|
|
omega_r = u[0]
|
|
omega_l = u[1]
|
|
|
|
dx = np.zeros(3)
|
|
|
|
dx[0] = (r/2.0 * np.cos(theta) - r*d/(2.0*R) * np.sin(theta)) * omega_r \
|
|
+ (r/2.0 * np.cos(theta) + r*d/(2.0 * R) * np.sin(theta)) * omega_l
|
|
dx[1] = (r/2.0 * np.sin(theta) + r*d/(2.0*R) * np.cos(theta)) * omega_r \
|
|
+ (r/2 * np.sin(theta) - r*d/(2.0*R) * np.cos(theta)) * omega_l
|
|
dx[2] = -r/(2.0*R) * (omega_r - omega_l)
|
|
|
|
return dx
|
|
|
|
class RemoteController:
|
|
def __init__(self, id, ip):
|
|
# self.robots = #[Robot(11, '192.168.1.11', (6, -3, np.pi)), Robot(12, '192.168.1.12', (6, -3, np.pi)),
|
|
# Robot(13, '192.168.1.13', (6, -3, np.pi)), Robot(14, '192.168.1.14', (6, -2, np.pi))]
|
|
#self.robots = [Robot(13, '192.168.1.13', (6, -3, np.pi))]
|
|
#self.robots = []
|
|
#self.robots = [Robot(11, '192.168.1.11', (6,-3,0)), Robot(14, '192.168.1.14', (6,3,0))]
|
|
#self.robots = [Robot(11, '192.168.1.11'), Robot(14, '192.168.1.14')]
|
|
self.robots = [Robot(12, '192.168.1.12')]
|
|
|
|
self.robot_ids = {}
|
|
for r in self.robots:
|
|
self.robot_ids[r.id] = r
|
|
|
|
self.valid_cmds = ['forward', 'backward', 'turn left', 'turn right', 'turn around', 'get position', 'set position']
|
|
|
|
# socket for movement commands
|
|
self.comm_socket = socket.socket()
|
|
self.comm_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
|
|
|
for robot in self.robots:
|
|
robot.connect()
|
|
|
|
self.comm_socket.bind(('', 1337))
|
|
self.comm_socket.listen(5)
|
|
|
|
self.t = time.time()
|
|
|
|
# variables for simulated state
|
|
self.x0 = None
|
|
self.ts = np.array([])
|
|
self.xs = []
|
|
|
|
# variable for mpc open loop
|
|
self.ol_x = None
|
|
self.ol_y = None
|
|
|
|
# ROS subscriber for detected markers
|
|
self.estimator = opencv_viewer_example.ArucoEstimator(self.robot_ids.keys())
|
|
|
|
self.estimator_thread = threading.Thread(target=self.estimator.run_tracking)
|
|
self.estimator_thread.start()
|
|
|
|
# pid parameters
|
|
self.controlling = False
|
|
|
|
self.mstep = 2
|
|
self.ols = OpenLoopSolver(N=20, T=1.0)
|
|
self.ols.setup()
|
|
self.dt = self.ols.T / self.ols.N
|
|
|
|
self.target = (0.0, 0.0, 0.0)
|
|
|
|
# integrator
|
|
self.r = scipy.integrate.ode(f_ode)
|
|
self.omega_max = 5.0
|
|
self.control_scaling = 0.2
|
|
#self.omega_max = 13.32
|
|
|
|
def controller(self):
|
|
print("waiting until all markers are detected...")
|
|
while not self.estimator.all_corners_detected():
|
|
pass
|
|
print("starting control")
|
|
|
|
running = True
|
|
while running:
|
|
(clientsocket, address) = self.comm_socket.accept()
|
|
clientsocket.settimeout(None)
|
|
|
|
connected = True
|
|
while connected:
|
|
try:
|
|
data = myreceive(clientsocket)
|
|
print("data received: ", data)
|
|
|
|
inputs = data.split(b',')
|
|
cmd = inputs[0]
|
|
cmd = cmd.strip().decode()
|
|
|
|
if len(inputs) > 1:
|
|
if cmd in self.valid_cmds:
|
|
try:
|
|
robot_id = int(inputs[1])
|
|
except ValueError:
|
|
print("could not read robot id!")
|
|
clientsocket.sendall(b'Could not read robot id!\n')
|
|
|
|
if robot_id in self.robot_ids:
|
|
if cmd == b'get position':
|
|
clientsocket.sendall(bytes('{}\n'.format(self.robot_ids[robot_id].grid_pos)))
|
|
elif cmd == b'set position':
|
|
try:
|
|
pos_data = ",".join(inputs[2:])
|
|
new_grid_pos = tuple(map(lambda x: int(x[1]) if x[0] < 2 else float(x[1]), enumerate(pos_data.strip().strip('()').split(','))))
|
|
self.robot_ids[robot_id].grid_pos = new_grid_pos
|
|
clientsocket.sendall(b'OK\n')
|
|
except IndexError as e:
|
|
print("could not set grid position!")
|
|
clientsocket.sendall(bytes(
|
|
'could not set grid position! (invalid format)\n'.format(
|
|
self.robot_ids[robot_id].grid_pos)))
|
|
except ValueError as e:
|
|
print("could not set grid position!")
|
|
clientsocket.sendall(bytes('could not set grid position! (invalid format)\n'.format(self.robot_ids[robot_id].grid_pos)))
|
|
else:
|
|
self.mpc_control(robot_id, cmd)
|
|
clientsocket.sendall(b'OK\n')
|
|
else:
|
|
print("invalid robot id!")
|
|
clientsocket.sendall(b'Invalid robot id!\n')
|
|
|
|
else:
|
|
clientsocket.sendall(b'Invalid command!\n')
|
|
else: # len(inputs) <= 1
|
|
if b'quit' in inputs[0]:
|
|
clientsocket.close()
|
|
self.comm_socket.close()
|
|
connected = False
|
|
running = False
|
|
else:
|
|
print("could not process command!")
|
|
clientsocket.sendall(b'Could not process request!\n')
|
|
|
|
except RuntimeError:
|
|
print("disconnected")
|
|
connected = False
|
|
clientsocket.close()
|
|
|
|
def mpc_control(self, robot_id, cmd):
|
|
robot = self.robot_ids[robot_id] # get robot to be controlled
|
|
|
|
print("robot grid pos before move: ", robot)
|
|
robot.move(cmd)
|
|
print("robot grid pos after move: ", robot)
|
|
|
|
self.target = self.estimator.get_pos_from_grid_point(robot.x, robot.y, robot.orientation)
|
|
|
|
self.pid = False
|
|
self.mpc = True
|
|
|
|
near_target = 0
|
|
|
|
while near_target < 5:
|
|
# open loop controller
|
|
events = pygame.event.get()
|
|
|
|
for event in events:
|
|
if event.type == pygame.KEYDOWN:
|
|
if event.key == pygame.K_UP:
|
|
self.controlling = True
|
|
self.t = time.time()
|
|
elif event.key == pygame.K_DOWN:
|
|
self.controlling = False
|
|
if self.robot_ids[robot_id].socket:
|
|
self.robot_ids[robot_id].socket.send('(0.0,0.0)\n')
|
|
elif event.key == pygame.K_0:
|
|
self.target = np.array([0,0,0])
|
|
elif event.key == pygame.K_PLUS:
|
|
self.control_scaling += 0.1
|
|
self.control_scaling = min(self.control_scaling, 1.0)
|
|
print("control scaling = ", self.control_scaling)
|
|
elif event.key == pygame.K_MINUS:
|
|
self.control_scaling -= 0.1
|
|
self.control_scaling = max(self.control_scaling, 0.1)
|
|
print("control scaling = ", self.control_scaling)
|
|
elif event.key == pygame.K_ESCAPE:
|
|
print("quit!")
|
|
self.controlling = False
|
|
if self.robot_ids[robot_id].socket:
|
|
self.robot_ids[robot_id].socket.send('(0.0,0.0)\n')
|
|
self.anim_stopped = True
|
|
return
|
|
elif event.key == pygame.QUIT:
|
|
print("quit!")
|
|
self.controlling = False
|
|
if self.robot_ids[robot_id].socket:
|
|
self.robot_ids[robot_id].socket.send('(0.0,0.0)\n')
|
|
self.anim_stopped = True
|
|
return
|
|
|
|
if self.mpc:
|
|
x_pred = self.get_measurement(robot_id)
|
|
|
|
tmpc_start = time.time()
|
|
|
|
error_pos = np.linalg.norm(x_pred[0:2] - self.target[0:2])
|
|
angles_unwrapped = np.unwrap([x_pred[2], self.target[2]]) # unwrap angle to avoid jump in data
|
|
error_ang = np.abs(angles_unwrapped[0] - angles_unwrapped[1])
|
|
#print("error pos = ", error_pos)
|
|
#print("error_pos = {}, error_ang = {}".format(error_pos, error_ang))
|
|
|
|
#if error_pos > 0.075 or error_ang > 0.35:
|
|
if error_pos > 0.05 or error_ang > 0.2:
|
|
# solve mpc open loop problem
|
|
res = self.ols.solve(x_pred, self.target)
|
|
|
|
#us1 = res[0]
|
|
#us2 = res[1]
|
|
us1 = res[0] * self.control_scaling
|
|
us2 = res[1] * self.control_scaling
|
|
#print("u = {}", (us1, us2))
|
|
|
|
tmpc_end = time.time()
|
|
#print("---------------- mpc solution took {} seconds".format(tmpc_end - tmpc_start))
|
|
dt_mpc = time.time() - self.t
|
|
if dt_mpc < self.dt: # wait until next control can be applied
|
|
#print("sleeping for {} seconds...".format(self.dt - dt_mpc))
|
|
time.sleep(self.dt - dt_mpc)
|
|
else:
|
|
us1 = [0] * self.mstep
|
|
us2 = [0] * self.mstep
|
|
|
|
near_target += 1
|
|
|
|
# send controls to the robot
|
|
for i in range(0, self.mstep): # option to use multistep mpc if len(range) > 1
|
|
u1 = us1[i]
|
|
u2 = us2[i]
|
|
if self.robot_ids[robot_id].socket:
|
|
#self.robot_ids[robot_id].socket.send('({},{})\n'.format(u1, u2).encode())
|
|
if i < self.mstep:
|
|
time.sleep(self.dt)
|
|
self.t = time.time() # save time the most recent control was applied
|
|
|
|
def get_measurement(self, robot_id):
|
|
return np.array(self.estimator.get_robot_state_estimate(robot_id))
|
|
|
|
def main(args):
|
|
parser = ArgumentParser()
|
|
parser.add_argument('id', metavar='id', type=str, help='marker id of the controlled robot')
|
|
parser.add_argument('ip', metavar='ip', type=str, help='ip address of the controlled robot')
|
|
args = parser.parse_args()
|
|
|
|
marker_id = int(args.id)
|
|
ip = args.ip
|
|
|
|
rc = RemoteController(marker_id, ip)
|
|
|
|
pygame.init()
|
|
|
|
screenheight = 480
|
|
screenwidth = 640
|
|
pygame.display.set_mode([screenwidth, screenheight])
|
|
|
|
rc.controller()
|
|
|
|
if __name__ == '__main__':
|
|
main(sys.argv)
|