Initial commit

main
Valentin Ochs 2021-01-31 19:26:40 +01:00
commit cd0f638910
5 changed files with 323 additions and 0 deletions

9
.gitignore vendored Normal file
View File

@ -0,0 +1,9 @@
*.ld
*.o
*.d
*.elf
*.map
.#*
/main.bin
/compile_commands.json
/.ccls-cache

14
Makefile Normal file
View File

@ -0,0 +1,14 @@
OOCD ?= openocd
OOCD_INTERFACE ?= stlink-v2
OOCD_TARGET ?= stm32f4x
BMP_PORT ?= /dev/ttyBmpGdb
CFLAGS=-g -O0 -std=c99 -pedantic -Wall
CXXFLAGS=-g -O0 -std=c++17 -pedantic -Wall
OBJS = usb.o
BINARY ?= main
DEVICE=STM32F405RG
include ../rules.mk

13
main.c Normal file
View File

@ -0,0 +1,13 @@
#include <libopencm3/stm32/rcc.h>
#include "usb.h"
int main(void) {
rcc_clock_setup_pll(&rcc_hse_12mhz_3v3[RCC_CLOCK_3V3_168MHZ]);
usb_setup();
while (1) {
__asm__("wfi");
}
}

283
usb.c Normal file
View File

@ -0,0 +1,283 @@
#include <libopencm3/stm32/desig.h>
#include <libopencm3/stm32/f4/nvic.h>
#include <libopencm3/stm32/gpio.h>
#include <libopencm3/stm32/rcc.h>
#include <libopencm3/usb/cdc.h>
#include <libopencm3/usb/usbd.h>
#include <stddef.h>
#include "usb.h"
// Number of serial devices we want to provide.
#define NUM_SERIAL 2
static const struct usb_device_descriptor dev = {
.bLength = USB_DT_DEVICE_SIZE,
.bDescriptorType = USB_DT_DEVICE,
.bcdUSB = 0x0200,
// Devices with class 0xEF, subclass 2, and protocol 1 are interface associations
.bDeviceClass = 0xEF,
.bDeviceSubClass = 2,
.bDeviceProtocol = 1,
.bMaxPacketSize0 = 64,
.idVendor = 0x0483,
.idProduct = 0x5740,
// Revision of the device: 2.00
.bcdDevice = 0x0200,
// Indices into the string table (starts at 1 - 0 is none)
.iManufacturer = 1,
.iProduct = 2,
.iSerialNumber = 3,
// We only have one configuration
.bNumConfigurations = 1,
};
// CDC-ACM devices need a functional descriptor that looks like this
struct usb_cdcacm_functional_descriptor {
struct usb_cdc_header_descriptor header;
struct usb_cdc_call_management_descriptor call_mgmt;
struct usb_cdc_acm_descriptor acm;
struct usb_cdc_union_descriptor cdc_union;
} __attribute__((packed));
// Each CDC-ACM device has...
// two data endpoints and one control endpoint
static struct usb_endpoint_descriptor endpoints[3 * NUM_SERIAL];
// one functional descriptor
static struct usb_cdcacm_functional_descriptor
cdcacm_functional_descriptors[NUM_SERIAL];
// a data interface combining the two data endpoints, and a control interface
static struct usb_interface_descriptor interface_descriptors[2 * NUM_SERIAL];
// instantiate the usb_interface struct needed by libopencm3
static struct usb_interface interfaces[2 * NUM_SERIAL];
// Create the one configuration we have
static const struct usb_config_descriptor config = {
.bLength = USB_DT_CONFIGURATION_SIZE,
.bDescriptorType = USB_DT_CONFIGURATION,
.bNumInterfaces =
sizeof(interface_descriptors) / sizeof(interface_descriptors[0]),
// this is filled in later by libopencm3
.wTotalLength = 0,
// first and only config
.bConfigurationValue = 1,
// name of the config (none here)
.iConfiguration = 0,
// 0x80 is required to be set
.bmAttributes = 0x80,
// multiply by 2 mA to get maximum power we request
.bMaxPower = 100,
// pointer to the interfaces declared above
.interface = interfaces,
};
static char serial[24];
static char * usb_strings[] = {
"Imaginaerraum.de",
"DoorControl",
serial,
"RFID",
"Other"
};
/* Buffer to be used for control requests. */
uint8_t usbd_control_buffer[512];
static enum usbd_request_return_codes cdcacm_control_request(usbd_device *usbd_dev,
struct usb_setup_data *req, uint8_t **buf, uint16_t *len,
void (**complete)(usbd_device *usbd_dev, struct usb_setup_data *req))
{
(void)complete;
(void)buf;
(void)usbd_dev;
switch (req->bRequest) {
case USB_CDC_REQ_SET_CONTROL_LINE_STATE: {
/*
* This Linux cdc_acm driver requires this to be implemented
* even though it's optional in the CDC spec, and we don't
* advertise it in the ACM functional descriptor.
*/
return USBD_REQ_HANDLED;
}
case USB_CDC_REQ_SET_LINE_CODING:
if (*len < sizeof(struct usb_cdc_line_coding)) {
return USBD_REQ_NOTSUPP;
}
return USBD_REQ_HANDLED;
}
return USBD_REQ_NOTSUPP;
}
static void cdcacm_data_rx_cb(usbd_device *usbd_dev, uint8_t ep)
{
(void)ep;
char buf[64];
// Read some data from the endpoint
int len = usbd_ep_read_packet(usbd_dev, ep, buf, 64);
if (len) {
// Write it to the endpoint of the other interface
while (usbd_ep_write_packet(usbd_dev, ep | 0x80, buf, len) == 0);
}
}
static void cdcacm_set_config(usbd_device *usbd_dev, uint16_t wValue)
{
(void)wValue;
for (int i = 0; i < NUM_SERIAL; i++) {
// set up all the endpoints
usbd_ep_setup(usbd_dev, 0x01 + 2*i, USB_ENDPOINT_ATTR_BULK, 64,
cdcacm_data_rx_cb);
usbd_ep_setup(usbd_dev, 0x81 + 2*i, USB_ENDPOINT_ATTR_BULK, 64, NULL);
usbd_ep_setup(usbd_dev, 0x81 + 2*i + 1, USB_ENDPOINT_ATTR_INTERRUPT, 16, NULL);
}
usbd_register_control_callback(
usbd_dev,
USB_REQ_TYPE_CLASS | USB_REQ_TYPE_INTERFACE,
USB_REQ_TYPE_TYPE | USB_REQ_TYPE_RECIPIENT,
cdcacm_control_request);
}
usbd_device *usbd_dev;
void usb_setup() {
rcc_periph_clock_enable(RCC_GPIOA);
rcc_periph_clock_enable(RCC_OTGFS);
desig_get_unique_id_as_string(serial, sizeof serial);
gpio_mode_setup(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO11 | GPIO12);
gpio_set_af(GPIOA, GPIO_AF10, GPIO11 | GPIO12);
for (uint8_t i = 0; i < NUM_SERIAL; i++) {
// set up the endpoints
// data endpoints are at addresses 1, 3, 5 (or 0x81, 0x83, 0x85) and so on
// control endpoints are at addresses 0x82, 0x84, 0x86...
// index of the first endpoint in our array
struct usb_endpoint_descriptor *data_ep = &endpoints[3 * i];
struct usb_endpoint_descriptor *ctrl_ep = data_ep + 2;
// address of the first endpoint -
const uint8_t data_ep_num = 0x01 + 2*i;
const uint8_t ctrl_ep_num = data_ep_num + 1;
const uint8_t data_iface = 2*i;
const uint8_t control_iface = data_iface + 1;
// OUT endpoint for data (host to device)
data_ep[0] = (struct usb_endpoint_descriptor) {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = (uint8_t)(data_ep_num),
.bmAttributes = USB_ENDPOINT_ATTR_BULK,
.wMaxPacketSize = 64
};
// IN endpoint (device to host) is the same except for the direction
data_ep[1] = data_ep[0];
data_ep[1].bEndpointAddress |= 0x80;
// The control endpoint is for interrupt transfers. Its address is one
// higher than the data endpoints, has smaller packets, and we don't really
// care about its interval (because we're not using it)
*ctrl_ep = (struct usb_endpoint_descriptor) {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = (uint8_t)(0x80 + ctrl_ep_num),
.bmAttributes = USB_ENDPOINT_ATTR_INTERRUPT,
.wMaxPacketSize = 16,
.bInterval = 255
};
cdcacm_functional_descriptors[i] = (struct usb_cdcacm_functional_descriptor) {
.header = (struct usb_cdc_header_descriptor) {
.bFunctionLength = sizeof (struct usb_cdc_header_descriptor),
.bDescriptorType = CS_INTERFACE,
.bDescriptorSubtype = USB_CDC_TYPE_HEADER,
// Version of the standard
.bcdCDC = 0x0110
},
.call_mgmt = (struct usb_cdc_call_management_descriptor) {
.bFunctionLength = sizeof (struct usb_cdc_call_management_descriptor),
.bDescriptorType = CS_INTERFACE,
.bDescriptorSubtype = USB_CDC_TYPE_CALL_MANAGEMENT,
// We do no call management
.bmCapabilities = 0,
// Index of our data interface
.bDataInterface = data_iface,
},
.acm = (struct usb_cdc_acm_descriptor){
.bFunctionLength = sizeof (struct usb_cdc_acm_descriptor),
.bDescriptorType = CS_INTERFACE,
.bDescriptorSubtype = USB_CDC_TYPE_ACM,
// Nothing here either
.bmCapabilities = 0,
},
.cdc_union = (struct usb_cdc_union_descriptor) {
.bFunctionLength = sizeof (struct usb_cdc_union_descriptor),
.bDescriptorType = CS_INTERFACE,
.bDescriptorSubtype = USB_CDC_TYPE_UNION,
// Our interfaces
.bControlInterface = control_iface,
.bSubordinateInterface0 = data_iface,
}
};
// A plain data interface
interface_descriptors[data_iface] = (struct usb_interface_descriptor) {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = data_iface,
.bAlternateSetting = 0,
// OUT and IN
.bNumEndpoints = 2,
.bInterfaceClass = USB_CLASS_DATA,
.bInterfaceSubClass = 0,
.bInterfaceProtocol = 0,
.iInterface = 0,
.endpoint = data_ep
};
interfaces[data_iface] = (struct usb_interface) {
.num_altsetting = 1, .altsetting = &interface_descriptors[data_iface]
};
interface_descriptors[control_iface] = (struct usb_interface_descriptor) {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = control_iface,
.bAlternateSetting = 0,
// Just one direction here
.bNumEndpoints = 1,
.bInterfaceClass = USB_CLASS_CDC,
.bInterfaceSubClass = USB_CDC_SUBCLASS_ACM,
.bInterfaceProtocol = USB_CDC_PROTOCOL_AT,
.iInterface = (uint8_t)(4 + i),
.endpoint = ctrl_ep,
.extra = &cdcacm_functional_descriptors[i],
.extralen = sizeof cdcacm_functional_descriptors[0]
};
interfaces[control_iface] = (struct usb_interface){
.num_altsetting = 1, .altsetting = &interface_descriptors[control_iface]};
}
usbd_dev = usbd_init(&otgfs_usb_driver, &dev, &config,
(char const * const *)usb_strings, (sizeof usb_strings) / sizeof(usb_strings[0]),
usbd_control_buffer, sizeof(usbd_control_buffer));
usbd_register_set_config_callback(usbd_dev, cdcacm_set_config);
nvic_enable_irq(NVIC_OTG_FS_IRQ);
}
void otg_fs_isr() { usbd_poll(usbd_dev); }

4
usb.h Normal file
View File

@ -0,0 +1,4 @@
#ifndef USB_H
#define USB_H
void usb_setup(void);
#endif