cleaned up code for segment output
This commit is contained in:
parent
903fbdba07
commit
6ac2c864c5
|
@ -3,176 +3,7 @@ import matplotlib.pyplot as plt
|
|||
import math
|
||||
import operator
|
||||
|
||||
# scale in inkscape
|
||||
# 1 unit = 0.283 mm
|
||||
svg_scale = 1000.0/282.222
|
||||
|
||||
def svg_circle(id, name, c, r):
|
||||
# create circle object in svg notation
|
||||
text = [' <circle\n',
|
||||
' id="circle{}"\n'.format(id),
|
||||
' inkscape:label="{}"\n'.format(name),
|
||||
' style="fill:none;stroke:#000000;stroke-width:0.1mm"\n',
|
||||
' r="{}mm"\n'.format(r),
|
||||
' cy="{}mm"\n'.format(c[1]),
|
||||
' cx="{}mm" />\n'.format(c[0])]
|
||||
|
||||
return text
|
||||
|
||||
def svg_puzzle(p, size, angle):
|
||||
# convert angle to radians
|
||||
angle = angle / 360.0 * 2.0 * np.pi
|
||||
|
||||
|
||||
# compute points
|
||||
"""
|
||||
v1 and v2 are orthogonal vectors
|
||||
|
||||
construction of points (starting at p):
|
||||
|
||||
p3 <------ -2 v1 ------ p2
|
||||
^
|
||||
|
|
||||
v2
|
||||
|
|
||||
|
|
||||
p4 <-- -v1 -- p -- v1 --> p1
|
||||
|
||||
then between points p2 and p3 with draw an arc
|
||||
"""
|
||||
v1 = np.array([np.cos(angle), np.sin(angle)])
|
||||
v2 = np.array([v1[1], -v1[0]])
|
||||
p1 = p + size * v1
|
||||
p2 = p1 + size * v2
|
||||
p3 = p2 - 2.0 * size * v1
|
||||
p4 = p - size * v1
|
||||
|
||||
# convert to svg units
|
||||
p1 *= svg_scale
|
||||
p2 *= svg_scale
|
||||
p3 *= svg_scale
|
||||
p4 *= svg_scale
|
||||
|
||||
radius_scaled = 1.25 * size * svg_scale
|
||||
|
||||
text = [' <path \n '
|
||||
' id="path666" \n '
|
||||
' style="fill:none;stroke:#ff0000;stroke-width:1.60000002" \n'
|
||||
' d="M {} {} L {} {} A {} {} 0 1 0 {} {} L {} {}"'
|
||||
' />\n'.format(p1[0], p1[1], p2[0], p2[1], radius_scaled, radius_scaled, p3[0], p3[1], p4[0], p4[1])]
|
||||
|
||||
return text
|
||||
|
||||
def svg_line_puzzle(start, end, puzzle_scale=1.0, linewidth=0.50):
|
||||
# draws a line from start to end with a simple jigsaw puzzle style cutout in the middle
|
||||
# the size of the cutout can be controlled with the puzzle_scale parameter
|
||||
# compute points
|
||||
"""
|
||||
v1 and v2 are orthogonal vectors
|
||||
|
||||
construction of points (starting at p (middle between start and end)):
|
||||
|
||||
p2 ------- 2 v1 -----> p3
|
||||
^
|
||||
|
|
||||
v2
|
||||
|
|
||||
|
|
||||
start --- p1 <-- -v1 -- p -- v1 --> p4 --- end
|
||||
|
||||
then between points p2 and p3 with draw an arc
|
||||
"""
|
||||
v = end - start
|
||||
dist = np.linalg.norm(v)
|
||||
size = dist / 10.0 * puzzle_scale # size of the cutout
|
||||
v = v / dist
|
||||
angle = math.atan2(v[1], v[0]) # angle of v
|
||||
|
||||
# midpoint between start and end
|
||||
p = np.mean([start, end], axis=0)
|
||||
|
||||
v1 = np.array([np.cos(angle), np.sin(angle)])
|
||||
v2 = np.array([v1[1], -v1[0]])
|
||||
p1 = p - size * v1
|
||||
p2 = p1 + size * v2
|
||||
p3 = p2 + 2.0 * size * v1
|
||||
p4 = p + size * v1
|
||||
|
||||
# convert to svg units
|
||||
p1 *= svg_scale
|
||||
p2 *= svg_scale
|
||||
p3 *= svg_scale
|
||||
p4 *= svg_scale
|
||||
start *= svg_scale
|
||||
end *= svg_scale
|
||||
|
||||
radius_scaled = 1.25 * size * svg_scale
|
||||
|
||||
text = [' <path \n '
|
||||
' id="path666" \n '
|
||||
' style="fill:none;stroke:#000000;stroke-width:{}mm" \n'
|
||||
' d="M {} {} L {} {} L {} {} A {} {} 0 1 1 {} {} L {} {} L {} {}"'
|
||||
' />\n'.format(linewidth, start[0], start[1], p1[0], p1[1], p2[0], p2[1], radius_scaled, radius_scaled,
|
||||
p3[0], p3[1], p4[0], p4[1], end[0], end[1])]
|
||||
|
||||
return text
|
||||
|
||||
def svg_half_circle(id, name, c, r, angle, orientation_flag=1):
|
||||
# draws half a circle centered at c with radius r
|
||||
# angle specifies how the half circle should be rotated
|
||||
# for the default angle of zero, it draws the top half of the circle
|
||||
|
||||
# convert angle to radians
|
||||
angle = angle/360.0 * 2.0 * np.pi
|
||||
|
||||
# compute starting point
|
||||
v = np.array([np.cos(angle), np.sin(angle)])
|
||||
begin = c + r * v # in millimeters
|
||||
begin *= svg_scale # in svg units
|
||||
|
||||
# compute end point
|
||||
end = c - r * v # in millimeters
|
||||
end *= svg_scale # in svg units
|
||||
|
||||
radius_scaled = r * svg_scale # radius in svg units
|
||||
|
||||
text = [' <path \n '
|
||||
' id="path666" \n '
|
||||
' style="fill:none;stroke:#000000;stroke-width:0.60000002" \n'
|
||||
' d="M {} {} A {} {} 0 {} {} {} {}"'
|
||||
' />\n'.format(begin[0], begin[1], radius_scaled, radius_scaled, orientation_flag, orientation_flag,
|
||||
end[0], end[1])]
|
||||
|
||||
return text
|
||||
|
||||
def svg_arc(p1, p2, r, large_arc, sweep):
|
||||
begin = p1 * svg_scale
|
||||
end = p2 * svg_scale
|
||||
radius_scaled = r * svg_scale
|
||||
text = [' <path \n '
|
||||
' id="path666" \n '
|
||||
' style="fill:none;stroke:#000000;stroke-width:0.60000002" \n'
|
||||
' d="M {} {} A {} {} 0 {} {} {} {}"'
|
||||
' />\n'.format(begin[0], begin[1], radius_scaled, radius_scaled, large_arc, sweep,
|
||||
end[0], end[1])]
|
||||
|
||||
return text
|
||||
|
||||
def svg_rectangle(id, name, c, width, heigth, angle):
|
||||
x = np.sqrt(c[0]**2 + c[1]**2) - width/2
|
||||
y = - heigth
|
||||
text = ['<g transform="rotate({})">\n '
|
||||
'<rect x="{}mm" y="{}mm" width="{}mm" height="{}mm" style="fill:none;stroke-width:0.1mm;stroke:rgb(0,0,0)" />\n '
|
||||
'</g>\n'
|
||||
.format(angle, x, y ,width, heigth)]
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def svg_line(p1, p2, width=1.0):
|
||||
text = ['<line x1="{}mm" y1="{}mm" x2="{}mm" y2="{}mm" style="stroke:rgb(0,0,0);stroke-width:{}mm" />'.format(p1[0], p1[1], p2[0], p2[1], width)]
|
||||
|
||||
return text
|
||||
from svg_utils import *
|
||||
|
||||
|
||||
# this function reads and processes data for optimal circle packaging obtained form packomania.com
|
||||
|
@ -568,8 +399,8 @@ class PlateLayout:
|
|||
f_lines.remove(f_lines[-1])
|
||||
|
||||
# output plate as svg
|
||||
text = svg_circle(0, 'plate', (0,0), self.target_plate_radius)
|
||||
f_lines = f_lines + text
|
||||
# text = svg_circle(0, 'plate', (0,0), self.target_plate_radius)
|
||||
# f_lines = f_lines + text
|
||||
|
||||
output_all = False
|
||||
if output_all:
|
||||
|
@ -586,8 +417,8 @@ class PlateLayout:
|
|||
|
||||
pass
|
||||
|
||||
def output_segment(self, f_lines, k):
|
||||
|
||||
def output_segment(self, f_lines, k):
|
||||
# k = which segment?
|
||||
k_next = (k + 1) % self.N
|
||||
|
||||
|
@ -602,102 +433,44 @@ class PlateLayout:
|
|||
vunit2 = np.array([np.cos(a2), np.sin(a2)])
|
||||
p2 = vunit2 * self.target_center_hole_radius
|
||||
|
||||
text = svg_arc(p1, p2, self.target_center_hole_radius, 0, 1)
|
||||
f_lines = f_lines + text
|
||||
|
||||
f_lines += svg_arc(p1, p2, self.target_center_hole_radius, 0, 1)
|
||||
|
||||
# big circles arcs
|
||||
c = self.tube_1_coords[k]
|
||||
angle = self.tube_1_angles[k]
|
||||
text = svg_half_circle(k, 'big circle', c, self.target_radius_1, angle)
|
||||
f_lines = f_lines + text
|
||||
|
||||
c = self.tube_1_coords[k_next]
|
||||
angle = self.tube_1_angles[k_next]
|
||||
text = svg_half_circle(k_next, 'big circle', c, self.target_radius_1, angle, orientation_flag=0)
|
||||
f_lines = f_lines + text
|
||||
f_lines += svg_half_circle(k, 'big circle', self.tube_1_coords[k], self.target_radius_1, self.tube_1_angles[k])
|
||||
f_lines += svg_half_circle(k_next, 'big circle', self.tube_1_coords[k_next], self.target_radius_1,
|
||||
self.tube_1_angles[k_next], orientation_flag=0)
|
||||
|
||||
# small circle
|
||||
c = self.tube_2_coords[k]
|
||||
text = svg_circle(k, 'small circle', c, self.target_radius_2)
|
||||
f_lines = f_lines + text
|
||||
f_lines += svg_circle(k, 'small circle', self.tube_2_coords[k], self.target_radius_2)
|
||||
|
||||
# gear pos for big circle
|
||||
c = self.tube_1_tangents[k_next]
|
||||
circle_midpoint = self.tube_1_coords[k_next]
|
||||
v = np.array(c[0]) - np.array(circle_midpoint)
|
||||
v = v / np.linalg.norm(v)
|
||||
f_lines += svg_gear_marking(self.tube_1_tangents[k_next], self.tube_1_coords[k_next])
|
||||
|
||||
marking_length = 5.0
|
||||
|
||||
p1 = c[0]
|
||||
p2 = c[0] + v * marking_length
|
||||
|
||||
text = svg_line(p1, p2)
|
||||
f_lines = f_lines + text
|
||||
|
||||
# rectangle for big circles
|
||||
c = self.tube_1_cuts[k_next]
|
||||
text = svg_rectangle(k_next, 'cut', c['center'], c['length'], c['width'], c['angle_deg'])
|
||||
f_lines = f_lines + text
|
||||
# cutout rectangle for big circles
|
||||
f_lines += svg_rectangle(k_next, 'cut', self.tube_1_cuts[k_next])
|
||||
|
||||
# gear pos for small circle
|
||||
c = self.tube_2_tangents[k]
|
||||
circle_midpoint = self.tube_2_coords[k]
|
||||
v = np.array(c[0]) - np.array(circle_midpoint)
|
||||
v = v/np.linalg.norm(v)
|
||||
f_lines += svg_gear_marking(self.tube_2_tangents[k], self.tube_2_coords[k])
|
||||
|
||||
marking_length = 5.0
|
||||
# cutout rectangle for small circles
|
||||
f_lines += svg_rectangle(k, 'cut', self.tube_2_cuts[k])
|
||||
|
||||
p1 = c[0]
|
||||
p2 = c[0] + v * marking_length
|
||||
# first segment border
|
||||
f_lines += svg_segment_border_inner(self.tube_1_angles[k], self.target_center_hole_radius,
|
||||
self.tube_1_coords[k], self.target_radius_1)
|
||||
f_lines += svg_segment_border_outer(self.tube_1_angles[k], self.target_plate_radius, self.plate_module,
|
||||
self.tube_1_coords[k], self.target_radius_1)
|
||||
|
||||
text = svg_line(p1, p2)
|
||||
f_lines = f_lines + text
|
||||
# second segment border
|
||||
f_lines += svg_segment_border_inner(self.tube_1_angles[k_next], self.target_center_hole_radius,
|
||||
self.tube_1_coords[k_next], self.target_radius_1)
|
||||
f_lines += svg_segment_border_outer(self.tube_1_angles[k_next], self.target_plate_radius, self.plate_module,
|
||||
self.tube_1_coords[k_next], self.target_radius_1)
|
||||
|
||||
# rectangle for small circles
|
||||
c = self.tube_2_cuts[k]
|
||||
text = svg_rectangle(k, 'cut', c['center'], c['length'], c['width'], c['angle_deg'])
|
||||
f_lines = f_lines + text
|
||||
|
||||
# segment border (right)
|
||||
a = self.tube_1_angles[k]
|
||||
a = a / 360.0 * 2.0 * np.pi
|
||||
r1 = np.linalg.norm(np.array(self.tube_1_coords[k])) - self.target_radius_1
|
||||
vunit = np.array([np.cos(a), np.sin(a)])
|
||||
p1 = vunit * self.target_center_hole_radius
|
||||
p2 = vunit * r1
|
||||
#text = svg_line(p1, p2, 0.1)
|
||||
text = svg_line_puzzle(p1, p2)
|
||||
f_lines = f_lines + text
|
||||
|
||||
r2 = np.linalg.norm(np.array(self.tube_1_coords[k])) + self.target_radius_1
|
||||
p3 = vunit * r2
|
||||
r3 = self.target_plate_radius - self.plate_module
|
||||
p4 = vunit * r3
|
||||
text = svg_line_puzzle(p3, p4)
|
||||
#text = svg_line(p3, p4, 0.1)
|
||||
f_lines = f_lines + text
|
||||
|
||||
# segment border (left)
|
||||
a = self.tube_1_angles[k_next]
|
||||
a = a / 360.0 * 2.0 * np.pi
|
||||
r1 = np.linalg.norm(np.array(self.tube_1_coords[k_next])) - self.target_radius_1
|
||||
vunit = np.array([np.cos(a), np.sin(a)])
|
||||
p1 = vunit * self.target_center_hole_radius
|
||||
p2 = vunit * r1
|
||||
#text = svg_line(p1, p2, 0.1)
|
||||
text = svg_line_puzzle(p1, p2)
|
||||
f_lines = f_lines + text
|
||||
|
||||
r2 = np.linalg.norm(np.array(self.tube_1_coords[k_next])) + self.target_radius_1
|
||||
p3 = vunit * r2
|
||||
r3 = self.target_plate_radius - self.plate_module
|
||||
p4 = vunit * r3
|
||||
#text = svg_line(p3, p4, 0.1)
|
||||
text = svg_line_puzzle(p3, p4)
|
||||
f_lines = f_lines + text
|
||||
|
||||
# find outmost points for segment cut lines
|
||||
# in addition we rotate the points by 0.9 degrees because we also rotated the gear path
|
||||
# by this amount above
|
||||
r_pitch_minus_module = self.target_plate_radius - self.plate_module
|
||||
a1 = (self.tube_1_angles[k] - 0.9) / 360.0 * 2.0 * np.pi
|
||||
vunit1 = np.array([np.cos(a1), np.sin(a1)])
|
||||
|
@ -726,6 +499,7 @@ class PlateLayout:
|
|||
coordinates.append(c_running)
|
||||
pass
|
||||
|
||||
# find nodes on gear path with minimal distance to segment cuts
|
||||
dist_1 = [np.linalg.norm(c - outer_point_1 * svg_scale) for c in coordinates]
|
||||
dist_2 = [np.linalg.norm(c - outer_point_2 * svg_scale) for c in coordinates]
|
||||
|
||||
|
@ -736,24 +510,13 @@ class PlateLayout:
|
|||
coordinates = coordinates[min_dist_index_1:min_dist_index_2+1]
|
||||
else:
|
||||
coordinates = coordinates[min_dist_index_1:] + coordinates[0:min_dist_index_2]
|
||||
print("TODO: check this")
|
||||
|
||||
coordinates_data_raw_new = "".join(['{},{} '.format(c[0], c[1]) for c in coordinates])
|
||||
|
||||
# keep only those nodes from the gear path that are between the segment cuts
|
||||
gear_data_new = gear_data[0:index_start] + "M " + coordinates_data_raw_new + gear_data[index_end+1:]
|
||||
f_lines[j] = gear_data_new
|
||||
|
||||
|
||||
|
||||
|
||||
# find minimum distance and keep only points between the two distances
|
||||
# problem: does not consider manual rotation of the plate
|
||||
# -> rotate points outer_point_1 and outer_point_2 before computing the distance
|
||||
# ...
|
||||
|
||||
pass
|
||||
#f_lines[k] = gear_data[0:index+1] + gear_data[-2:]
|
||||
|
||||
return f_lines
|
||||
|
||||
def output_whole(self, f_lines):
|
||||
|
|
222
prototype/svg_utils.py
Normal file
222
prototype/svg_utils.py
Normal file
|
@ -0,0 +1,222 @@
|
|||
import numpy as np
|
||||
import math
|
||||
|
||||
# scale in inkscape
|
||||
# 1 unit = 0.28222 mm
|
||||
svg_scale = 1000.0 / 282.222
|
||||
|
||||
|
||||
def svg_circle(id, name, c, r):
|
||||
# create circle object centered at point c with radius r
|
||||
text = [' <circle\n',
|
||||
' id="circle{}"\n'.format(id),
|
||||
' inkscape:label="{}"\n'.format(name),
|
||||
' style="fill:none;stroke:#000000;stroke-width:0.1mm"\n',
|
||||
' r="{}mm"\n'.format(r),
|
||||
' cy="{}mm"\n'.format(c[1]),
|
||||
' cx="{}mm" />\n'.format(c[0])]
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def svg_puzzle(p, size, angle):
|
||||
# convert angle to radians
|
||||
angle = angle / 360.0 * 2.0 * np.pi
|
||||
|
||||
# compute points
|
||||
"""
|
||||
v1 and v2 are orthogonal vectors
|
||||
|
||||
construction of points (starting at p):
|
||||
|
||||
p3 <------ -2 v1 ------ p2
|
||||
^
|
||||
|
|
||||
v2
|
||||
|
|
||||
|
|
||||
p4 <-- -v1 -- p -- v1 --> p1
|
||||
|
||||
then between points p2 and p3 with draw an arc
|
||||
"""
|
||||
v1 = np.array([np.cos(angle), np.sin(angle)])
|
||||
v2 = np.array([v1[1], -v1[0]])
|
||||
p1 = p + size * v1
|
||||
p2 = p1 + size * v2
|
||||
p3 = p2 - 2.0 * size * v1
|
||||
p4 = p - size * v1
|
||||
|
||||
# convert to svg units
|
||||
p1 *= svg_scale
|
||||
p2 *= svg_scale
|
||||
p3 *= svg_scale
|
||||
p4 *= svg_scale
|
||||
|
||||
radius_scaled = 1.25 * size * svg_scale
|
||||
|
||||
text = [' <path \n '
|
||||
' id="path666" \n '
|
||||
' style="fill:none;stroke:#ff0000;stroke-width:1.60000002" \n'
|
||||
' d="M {} {} L {} {} A {} {} 0 1 0 {} {} L {} {}"'
|
||||
' />\n'.format(p1[0], p1[1], p2[0], p2[1], radius_scaled, radius_scaled, p3[0], p3[1], p4[0], p4[1])]
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def svg_line_puzzle(start, end, puzzle_scale=1.0, linewidth=0.50):
|
||||
# draws a line from start to end with a simple jigsaw puzzle style cutout in the middle
|
||||
# the size of the cutout can be controlled with the puzzle_scale parameter
|
||||
# compute points
|
||||
"""
|
||||
v1 and v2 are orthogonal vectors
|
||||
|
||||
construction of points (starting at p (middle between start and end)):
|
||||
|
||||
p2 ------- 2 v1 -----> p3
|
||||
^
|
||||
|
|
||||
v2
|
||||
|
|
||||
|
|
||||
start --- p1 <-- -v1 -- p -- v1 --> p4 --- end
|
||||
|
||||
then between points p2 and p3 with draw an arc
|
||||
"""
|
||||
v = end - start
|
||||
dist = np.linalg.norm(v)
|
||||
size = dist / 10.0 * puzzle_scale # size of the cutout
|
||||
v = v / dist
|
||||
angle = math.atan2(v[1], v[0]) # angle of v
|
||||
|
||||
# midpoint between start and end
|
||||
p = np.mean([start, end], axis=0)
|
||||
|
||||
v1 = np.array([np.cos(angle), np.sin(angle)])
|
||||
v2 = np.array([v1[1], -v1[0]])
|
||||
p1 = p - size * v1
|
||||
p2 = p1 + size * v2
|
||||
p3 = p2 + 2.0 * size * v1
|
||||
p4 = p + size * v1
|
||||
|
||||
# convert to svg units
|
||||
p1 *= svg_scale
|
||||
p2 *= svg_scale
|
||||
p3 *= svg_scale
|
||||
p4 *= svg_scale
|
||||
start *= svg_scale
|
||||
end *= svg_scale
|
||||
|
||||
radius_scaled = 1.25 * size * svg_scale
|
||||
|
||||
text = [' <path \n '
|
||||
' id="path666" \n '
|
||||
' style="fill:none;stroke:#000000;stroke-width:{}mm" \n'
|
||||
' d="M {} {} L {} {} L {} {} A {} {} 0 1 1 {} {} L {} {} L {} {}"'
|
||||
' />\n'.format(linewidth, start[0], start[1], p1[0], p1[1], p2[0], p2[1], radius_scaled, radius_scaled,
|
||||
p3[0], p3[1], p4[0], p4[1], end[0], end[1])]
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def svg_half_circle(id, name, c, r, angle, orientation_flag=1):
|
||||
# draws half a circle centered at c with radius r
|
||||
# angle specifies how the half circle should be rotated
|
||||
# the orientation flag determines if the upper or the lower half of the circle is drawn
|
||||
|
||||
# convert angle to radians
|
||||
angle = angle / 360.0 * 2.0 * np.pi
|
||||
|
||||
# compute starting point
|
||||
v = np.array([np.cos(angle), np.sin(angle)])
|
||||
begin = c + r * v # in millimeters
|
||||
begin *= svg_scale # in svg units
|
||||
|
||||
# compute end point
|
||||
end = c - r * v # in millimeters
|
||||
end *= svg_scale # in svg units
|
||||
|
||||
radius_scaled = r * svg_scale # radius in svg units
|
||||
|
||||
text = [' <path \n '
|
||||
' id="path666" \n '
|
||||
' style="fill:none;stroke:#000000;stroke-width:0.60000002" \n'
|
||||
' d="M {} {} A {} {} 0 {} {} {} {}"'
|
||||
' />\n'.format(begin[0], begin[1], radius_scaled, radius_scaled, orientation_flag, orientation_flag,
|
||||
end[0], end[1])]
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def svg_arc(p1, p2, r, large_arc, sweep):
|
||||
begin = p1 * svg_scale
|
||||
end = p2 * svg_scale
|
||||
radius_scaled = r * svg_scale
|
||||
text = [' <path \n '
|
||||
' id="path666" \n '
|
||||
' style="fill:none;stroke:#000000;stroke-width:0.60000002" \n'
|
||||
' d="M {} {} A {} {} 0 {} {} {} {}"'
|
||||
' />\n'.format(begin[0], begin[1], radius_scaled, radius_scaled, large_arc, sweep,
|
||||
end[0], end[1])]
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def svg_rectangle(id, name, c):
|
||||
center = c['center']
|
||||
width = c['length']
|
||||
height = c['width']
|
||||
angle = c['angle_deg']
|
||||
x = np.sqrt(center[0] ** 2 + center[1] ** 2) - width / 2
|
||||
y = - height
|
||||
text = ['<g transform="rotate({})">\n '
|
||||
'<rect x="{}mm" y="{}mm" width="{}mm" height="{}mm" style="fill:none;stroke-width:0.1mm;stroke:rgb(0,0,0)" />\n '
|
||||
'</g>\n'
|
||||
.format(angle, x, y, width, height)]
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def svg_line(p1, p2, width=1.0):
|
||||
text = ['<line x1="{}mm" y1="{}mm" x2="{}mm" y2="{}mm" style="stroke:rgb(0,0,0);stroke-width:{}mm" />'.format(p1[0],
|
||||
p1[1],
|
||||
p2[0],
|
||||
p2[1],
|
||||
width)]
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def svg_gear_marking(tangent_coord, circle_midpoint, marking_length=5.0):
|
||||
c = tangent_coord
|
||||
v = np.array(c[0]) - np.array(circle_midpoint)
|
||||
v = v / np.linalg.norm(v)
|
||||
|
||||
p1 = c[0]
|
||||
p2 = c[0] + v * marking_length
|
||||
|
||||
text = svg_line(p1, p2)
|
||||
|
||||
return text
|
||||
|
||||
def svg_segment_border_inner(angle, center_hole_radius, circle_pos, circle_radius):
|
||||
a = angle
|
||||
a = a / 360.0 * 2.0 * np.pi
|
||||
r1 = np.linalg.norm(np.array(circle_pos)) - circle_radius
|
||||
vunit = np.array([np.cos(a), np.sin(a)])
|
||||
p1 = vunit * center_hole_radius
|
||||
p2 = vunit * r1
|
||||
text = svg_line_puzzle(p1, p2)
|
||||
|
||||
return text
|
||||
|
||||
def svg_segment_border_outer(angle, plate_pitch_radius, plate_gear_module, circle_pos, circle_radius):
|
||||
a = angle
|
||||
a = a / 360.0 * 2.0 * np.pi
|
||||
vunit = np.array([np.cos(a), np.sin(a)])
|
||||
r2 = np.linalg.norm(np.array(circle_pos)) + circle_radius
|
||||
p3 = vunit * r2
|
||||
r3 = plate_pitch_radius - plate_gear_module
|
||||
p4 = vunit * r3
|
||||
text = svg_line_puzzle(p3, p4)
|
||||
|
||||
return text
|
Loading…
Reference in New Issue
Block a user