222 lines
7.1 KiB
Python
222 lines
7.1 KiB
Python
import numpy as np
|
|
import math
|
|
|
|
# scale in inkscape
|
|
# 1 unit = 0.28222 mm
|
|
svg_scale = 1000.0 / 282.222
|
|
|
|
|
|
def svg_circle(id, name, c, r):
|
|
# create circle object centered at point c with radius r
|
|
text = [' <circle\n',
|
|
' id="circle{}"\n'.format(id),
|
|
' inkscape:label="{}"\n'.format(name),
|
|
' style="fill:none;stroke:#000000;stroke-width:0.1mm"\n',
|
|
' r="{}mm"\n'.format(r),
|
|
' cy="{}mm"\n'.format(c[1]),
|
|
' cx="{}mm" />\n'.format(c[0])]
|
|
|
|
return text
|
|
|
|
|
|
def svg_puzzle(p, size, angle):
|
|
# convert angle to radians
|
|
angle = angle / 360.0 * 2.0 * np.pi
|
|
|
|
# compute points
|
|
"""
|
|
v1 and v2 are orthogonal vectors
|
|
|
|
construction of points (starting at p):
|
|
|
|
p3 <------ -2 v1 ------ p2
|
|
^
|
|
|
|
|
v2
|
|
|
|
|
|
|
|
p4 <-- -v1 -- p -- v1 --> p1
|
|
|
|
then between points p2 and p3 with draw an arc
|
|
"""
|
|
v1 = np.array([np.cos(angle), np.sin(angle)])
|
|
v2 = np.array([v1[1], -v1[0]])
|
|
p1 = p + size * v1
|
|
p2 = p1 + size * v2
|
|
p3 = p2 - 2.0 * size * v1
|
|
p4 = p - size * v1
|
|
|
|
# convert to svg units
|
|
p1 *= svg_scale
|
|
p2 *= svg_scale
|
|
p3 *= svg_scale
|
|
p4 *= svg_scale
|
|
|
|
radius_scaled = 1.25 * size * svg_scale
|
|
|
|
text = [' <path \n '
|
|
' id="path666" \n '
|
|
' style="fill:none;stroke:#ff0000;stroke-width:1.60000002" \n'
|
|
' d="M {} {} L {} {} A {} {} 0 1 0 {} {} L {} {}"'
|
|
' />\n'.format(p1[0], p1[1], p2[0], p2[1], radius_scaled, radius_scaled, p3[0], p3[1], p4[0], p4[1])]
|
|
|
|
return text
|
|
|
|
|
|
def svg_line_puzzle(start, end, puzzle_scale=1.0, linewidth=0.50):
|
|
# draws a line from start to end with a simple jigsaw puzzle style cutout in the middle
|
|
# the size of the cutout can be controlled with the puzzle_scale parameter
|
|
# compute points
|
|
"""
|
|
v1 and v2 are orthogonal vectors
|
|
|
|
construction of points (starting at p (middle between start and end)):
|
|
|
|
p2 ------- 2 v1 -----> p3
|
|
^
|
|
|
|
|
v2
|
|
|
|
|
|
|
|
start --- p1 <-- -v1 -- p -- v1 --> p4 --- end
|
|
|
|
then between points p2 and p3 with draw an arc
|
|
"""
|
|
v = end - start
|
|
dist = np.linalg.norm(v)
|
|
size = dist / 10.0 * puzzle_scale # size of the cutout
|
|
v = v / dist
|
|
angle = math.atan2(v[1], v[0]) # angle of v
|
|
|
|
# midpoint between start and end
|
|
p = np.mean([start, end], axis=0)
|
|
|
|
v1 = np.array([np.cos(angle), np.sin(angle)])
|
|
v2 = np.array([v1[1], -v1[0]])
|
|
p1 = p - size * v1
|
|
p2 = p1 + size * v2
|
|
p3 = p2 + 2.0 * size * v1
|
|
p4 = p + size * v1
|
|
|
|
# convert to svg units
|
|
p1 *= svg_scale
|
|
p2 *= svg_scale
|
|
p3 *= svg_scale
|
|
p4 *= svg_scale
|
|
start *= svg_scale
|
|
end *= svg_scale
|
|
|
|
radius_scaled = 1.25 * size * svg_scale
|
|
|
|
text = [' <path \n '
|
|
' id="path666" \n '
|
|
' style="fill:none;stroke:#000000;stroke-width:{}mm" \n'
|
|
' d="M {} {} L {} {} L {} {} A {} {} 0 1 1 {} {} L {} {} L {} {}"'
|
|
' />\n'.format(linewidth, start[0], start[1], p1[0], p1[1], p2[0], p2[1], radius_scaled, radius_scaled,
|
|
p3[0], p3[1], p4[0], p4[1], end[0], end[1])]
|
|
|
|
return text
|
|
|
|
|
|
def svg_half_circle(id, name, c, r, angle, orientation_flag=1):
|
|
# draws half a circle centered at c with radius r
|
|
# angle specifies how the half circle should be rotated
|
|
# the orientation flag determines if the upper or the lower half of the circle is drawn
|
|
|
|
# convert angle to radians
|
|
angle = angle / 360.0 * 2.0 * np.pi
|
|
|
|
# compute starting point
|
|
v = np.array([np.cos(angle), np.sin(angle)])
|
|
begin = c + r * v # in millimeters
|
|
begin *= svg_scale # in svg units
|
|
|
|
# compute end point
|
|
end = c - r * v # in millimeters
|
|
end *= svg_scale # in svg units
|
|
|
|
radius_scaled = r * svg_scale # radius in svg units
|
|
|
|
text = [' <path \n '
|
|
' id="path666" \n '
|
|
' style="fill:none;stroke:#000000;stroke-width:0.60000002" \n'
|
|
' d="M {} {} A {} {} 0 {} {} {} {}"'
|
|
' />\n'.format(begin[0], begin[1], radius_scaled, radius_scaled, orientation_flag, orientation_flag,
|
|
end[0], end[1])]
|
|
|
|
return text
|
|
|
|
|
|
def svg_arc(p1, p2, r, large_arc, sweep):
|
|
begin = p1 * svg_scale
|
|
end = p2 * svg_scale
|
|
radius_scaled = r * svg_scale
|
|
text = [' <path \n '
|
|
' id="path666" \n '
|
|
' style="fill:none;stroke:#000000;stroke-width:0.60000002" \n'
|
|
' d="M {} {} A {} {} 0 {} {} {} {}"'
|
|
' />\n'.format(begin[0], begin[1], radius_scaled, radius_scaled, large_arc, sweep,
|
|
end[0], end[1])]
|
|
|
|
return text
|
|
|
|
|
|
def svg_rectangle(id, name, c):
|
|
center = c['center']
|
|
width = c['length']
|
|
height = c['width']
|
|
angle = c['angle_deg']
|
|
x = np.sqrt(center[0] ** 2 + center[1] ** 2) - width / 2
|
|
y = - height
|
|
text = ['<g transform="rotate({})">\n '
|
|
'<rect x="{}mm" y="{}mm" width="{}mm" height="{}mm" style="fill:none;stroke-width:0.1mm;stroke:rgb(0,0,0)" />\n '
|
|
'</g>\n'
|
|
.format(angle, x, y, width, height)]
|
|
|
|
return text
|
|
|
|
|
|
def svg_line(p1, p2, width=1.0):
|
|
text = ['<line x1="{}mm" y1="{}mm" x2="{}mm" y2="{}mm" style="stroke:rgb(0,0,0);stroke-width:{}mm" />'.format(p1[0],
|
|
p1[1],
|
|
p2[0],
|
|
p2[1],
|
|
width)]
|
|
|
|
return text
|
|
|
|
|
|
def svg_gear_marking(tangent_coord, circle_midpoint, marking_length=5.0):
|
|
c = tangent_coord
|
|
v = np.array(c[0]) - np.array(circle_midpoint)
|
|
v = v / np.linalg.norm(v)
|
|
|
|
p1 = c[0]
|
|
p2 = c[0] + v * marking_length
|
|
|
|
text = svg_line(p1, p2)
|
|
|
|
return text
|
|
|
|
def svg_segment_border_inner(angle, center_hole_radius, circle_pos, circle_radius):
|
|
a = angle
|
|
a = a / 360.0 * 2.0 * np.pi
|
|
r1 = np.linalg.norm(np.array(circle_pos)) - circle_radius
|
|
vunit = np.array([np.cos(a), np.sin(a)])
|
|
p1 = vunit * center_hole_radius
|
|
p2 = vunit * r1
|
|
text = svg_line_puzzle(p1, p2)
|
|
|
|
return text
|
|
|
|
def svg_segment_border_outer(angle, plate_pitch_radius, plate_gear_module, circle_pos, circle_radius):
|
|
a = angle
|
|
a = a / 360.0 * 2.0 * np.pi
|
|
vunit = np.array([np.cos(a), np.sin(a)])
|
|
r2 = np.linalg.norm(np.array(circle_pos)) + circle_radius
|
|
p3 = vunit * r2
|
|
r3 = plate_pitch_radius - plate_gear_module
|
|
p4 = vunit * r3
|
|
text = svg_line_puzzle(p3, p4)
|
|
|
|
return text |