RoboRally/remote_control/roborally.py

541 lines
18 KiB
Python
Raw Normal View History

2020-09-04 14:53:39 +00:00
# startup:
# roscore -> start ros
# rosparam set cv_camera/device_id 0 -> set appropriate camera device
# rosrun cv_camera cv_camera_node -> start the camera
# roslaunch aruco_detect aruco_detect.launch camera:=cv_camera image:=image_raw dictionary:=16 transport:= fiducial_len:=0.1 # aruco marker detection
# python fiducial_to_2d_pos_angle.py -> compute position and angle of markers in 2d plane
import sys
import rospy
import pygame
import numpy as np
import socket
import scipy.integrate
import copy
import threading
from copy import deepcopy
import matplotlib.pyplot as plt
import matplotlib.animation as anim
import matplotlib.patches as patch
from shapely.geometry import Polygon
import time
from casadi_opt import OpenLoopSolver
from marker_pos_angle.msg import id_pos_angle
from collections import OrderedDict
from argparse import ArgumentParser
MSGLEN = 32
def myreceive(sock):
chunks = []
bytes_recd = 0
while bytes_recd < MSGLEN:
chunk = sock.recv(min(MSGLEN - bytes_recd, 2048))
if chunk == b'':
raise RuntimeError("socket connection broken")
chunks.append(chunk)
bytes_recd = bytes_recd + len(chunk)
if chunk[-1] == '\n':
break
return b''.join(chunks)
2020-09-04 14:53:39 +00:00
class Robot:
def __init__(self, id, ip):
self.pos = None
self.orient = None
self.grid_pos = (0,0,0)
2020-09-04 14:53:39 +00:00
self.id = id
self.pos = None
self.euler = None
self.ip = ip
def f_ode(t, x, u):
# dynamical model of the two-wheeled robot
# TODO: find exact values for these parameters
r = 0.03
R = 0.05
d = 0.02
theta = x[2]
omega_r = u[0]
omega_l = u[1]
dx = np.zeros(3)
dx[0] = (r/2.0 * np.cos(theta) - r*d/(2.0*R) * np.sin(theta)) * omega_r \
+ (r/2.0 * np.cos(theta) + r*d/(2.0 * R) * np.sin(theta)) * omega_l
dx[1] = (r/2.0 * np.sin(theta) + r*d/(2.0*R) * np.cos(theta)) * omega_r \
+ (r/2 * np.sin(theta) - r*d/(2.0*R) * np.cos(theta)) * omega_l
dx[2] = -r/(2.0*R) * (omega_r - omega_l)
return dx
class RemoteController:
def __init__(self, id, ip):
self.anim_stopped = False
#self.robots = [Robot(14, '192.168.1.103')]
#self.robots = [Robot(15, '192.168.1.102')]
self.robots = [Robot(id, ip)]
self.robot_ids = {}
for r in self.robots:
self.robot_ids[r.id] = r
self.valid_cmds = ['forward', 'backward', 'turn left', 'turn right']
2020-09-04 14:53:39 +00:00
# connect to robot
self.rc_socket = socket.socket()
#self.rc_socket = None
try:
for r in self.robots:
self.rc_socket.connect((r.ip, 1234)) # connect to robot
except socket.error:
print("could not connect to socket")
sys.exit(1)
# socket for movement commands
self.comm_socket = socket.socket()
self.comm_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
#self.comm_socket.bind((socket.gethostname(), 1337))
self.comm_socket.bind(('', 1337))
self.comm_socket.listen(5)
2020-09-04 14:53:39 +00:00
self.t = time.time()
# variables for simulated state
self.x0 = None
self.ts = np.array([])
self.xs = []
# variables for measurements
self.tms_0 = None
self.xm_0 = None
self.tms = None
self.xms = None
# variable for mpc open loop
self.ol_x = None
self.ol_y = None
self.mutex = threading.Lock()
# ROS subscriber for detected markers
marker_sub = rospy.Subscriber("/marker_id_pos_angle", id_pos_angle, self.measurement_callback)
# pid parameters
self.controlling = False
# currently active control
self.u1 = 0.0
self.u2 = 0.0
# animation
self.fig = plt.figure()
self.ax = self.fig.add_subplot(2,2,1)
self.ax2 = self.fig.add_subplot(2, 2, 2)
self.ax3 = self.fig.add_subplot(2, 2, 4)
self.xdata, self.ydata = [], []
self.line, = self.ax.plot([],[], color='grey', linestyle=':')
self.line_sim, = self.ax.plot([], [])
self.line_ol, = self.ax.plot([],[], color='green', linestyle='--')
self.dirm, = self.ax.plot([], [])
self.dirs, = self.ax.plot([], [])
self.line_x, = self.ax2.plot([],[])
self.line_y, = self.ax3.plot([], [])
self.track_line_inner, = self.ax.plot([], [])
self.track_line_outer, = self.ax.plot([], [])
self.ax.set_xlabel('x-position')
self.ax.set_ylabel('y-position')
self.ax.grid()
self.ax2.set_xlabel('Zeit t')
self.ax2.set_ylabel('x-position')
self.ax2.grid()
self.ax3.set_xlabel('Zeit t')
self.ax3.set_ylabel('y-position')
self.ax3.grid()
self.mstep = 2
self.ols = OpenLoopSolver(N=20, T=1.0)
self.ols.setup()
self.dt = self.ols.T / self.ols.N
self.target = (0.0, 0.0, 0.0)
# integrator
self.r = scipy.integrate.ode(f_ode)
self.omega_max = 5.0
self.control_scaling = 0.2
2020-09-04 14:53:39 +00:00
#self.omega_max = 13.32
def ani(self):
print("starting animation")
self.ani = anim.FuncAnimation(self.fig, init_func=self.ani_init, func=self.ani_update, interval=10, blit=True)
plt.ion()
plt.show(block=True)
def ani_init(self):
self.ax.set_xlim(-2, 2)
self.ax.set_ylim(-2, 2)
self.ax.set_aspect('equal', adjustable='box')
self.ax2.set_ylim(-2, 2)
self.ax2.set_xlim(0, 10)
self.ax3.set_ylim(-2, 2)
self.ax3.set_xlim(0, 10)
self.track_line_inner.set_data(self.track.inner_poly.exterior.xy)
self.track_line_outer.set_data(self.track.outer_poly.exterior.xy)
return self.line, self.line_sim, self.dirm, self.dirs, self.line_ol,\
self.track_line_inner, self.track_line_outer, self.line_x,self.line_y,
def ani_update(self, frame):
if self.anim_stopped:
self.ani.event_source.stop()
sys.exit(0)
#print("plotting")
self.mutex.acquire()
try:
# copy data for plot from global arrays
if self.tms is not None:
tm_local = deepcopy(self.tms)
xm_local = deepcopy(self.xms)
if len(tm_local) > 0:
# plot path of the robot
self.line.set_data(xm_local[:,0], xm_local[:,1])
# compute and plot direction the robot is facing
a = xm_local[-1, 0]
b = xm_local[-1, 1]
a2 = a + np.cos(xm_local[-1, 2]) * 0.2
b2 = b + np.sin(xm_local[-1, 2]) * 0.2
self.dirm.set_data(np.array([a, a2]), np.array([b, b2]))
n_plot = 300
if len(tm_local) > n_plot:
# plot x and y coordinate
self.line_x.set_data(tm_local[-n_plot:] - (tm_local[-1] - 10), xm_local[-n_plot:,0])
self.line_y.set_data(tm_local[-n_plot:] - (tm_local[-1] - 10), xm_local[-n_plot:, 1])
ts_local = deepcopy(self.ts)
xs_local = deepcopy(self.xs)
if len(ts_local) > 0:
# plot simulated path of the robot
self.line_sim.set_data(xs_local[:,0], xs_local[:,1])
# compute and plot direction the robot is facing
a = xs_local[-1, 0]
b = xs_local[-1, 1]
a2 = a + np.cos(xs_local[-1, 2]) * 0.2
b2 = b + np.sin(xs_local[-1, 2]) * 0.2
self.dirs.set_data(np.array([a, a2]), np.array([b, b2]))
ol_x_local = deepcopy(self.ol_x)
ol_y_local = deepcopy(self.ol_y)
if ol_x_local is not None:
self.line_ol.set_data(ol_x_local, ol_y_local)
else:
self.line_ol.set_data([],[])
finally:
self.mutex.release()
return self.line, self.line_sim, self.dirm, self.dirs, self.line_ol, self.track_line_inner, self.track_line_outer,\
self.line_x, self.line_y,
def measurement_callback(self, data):
#print(data)
# detect robots
if data.id in self.robot_ids:
r = self.robot_ids[data.id]
r.pos = (data.x, data.y) # only x and y component are important for us
r.euler = data.angle
# save measured position and angle for plotting
measurement = np.array([r.pos[0], r.pos[1], r.euler])
if self.tms_0 is None:
self.tms_0 = time.time()
self.xm_0 = measurement
self.mutex.acquire()
try:
self.tms = np.array([0.0])
self.xms = measurement
finally:
self.mutex.release()
else:
self.mutex.acquire()
try:
self.tms = np.vstack((self.tms, time.time() - self.tms_0))
self.xms = np.vstack((self.xms, measurement))
finally:
self.mutex.release()
def controller(self):
print("starting control")
running = True
while running:
(clientsocket, address) = self.comm_socket.accept()
2020-09-04 14:53:39 +00:00
connected = True
while connected:
try:
data = myreceive(clientsocket)
print(data)
try:
robot_id, cmd = data.split(',')
robot_id = int(robot_id)
cmd = cmd.strip()
if robot_id in self.robot_ids and cmd in self.valid_cmds:
self.mpc_control(robot_id, cmd)
elif cmd == 'quit':
clientsocket.close()
self.comm_socket.close()
connected = False
running = False
else:
print("invalid command or robot id!")
except ValueError:
print("could not process command!")
except RuntimeError:
print("disconnected")
connected = False
clientsocket.close()
def mpc_control(self, robot_id, cmd):
robot = self.robot_ids[robot_id] # get robot to be controlled
grid_pos = robot.grid_pos # grid position of the robot
# compute new grid position and orientation
if cmd == 'forward':
new_x = grid_pos[0] + 1 * np.cos(grid_pos[2])
new_y = grid_pos[1] + 1 * np.sin(grid_pos[2])
new_angle = grid_pos[2]
elif cmd == 'backward':
new_x = grid_pos[0] - 1 * np.cos(grid_pos[2])
new_y = grid_pos[1] - 1 * np.sin(grid_pos[2])
new_angle = grid_pos[2]
elif cmd == 'turn left':
new_x = grid_pos[0]
new_y = grid_pos[1]
new_angle = np.unwrap([0, grid_pos[2] + np.pi / 2])[1]
elif cmd == 'turn right':
new_x = grid_pos[0]
new_y = grid_pos[1]
new_angle = np.unwrap([0, grid_pos[2] - np.pi / 2])[1]
else:
print("unknown command!")
sys.exit(1)
grid_pos = (new_x, new_y, new_angle)
print("new grid pos for robot {}: {}".format(robot_id, grid_pos))
self.target = np.array((0.25 * grid_pos[0], 0.25 * grid_pos[1], grid_pos[2]))
self.pid = False
self.mpc = True
near_target = 0
while near_target < 5:
# open loop controller
events = pygame.event.get()
for event in events:
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_UP:
self.controlling = True
self.t = time.time()
elif event.key == pygame.K_DOWN:
self.controlling = False
if self.rc_socket:
self.rc_socket.send('(0.0,0.0)\n')
elif event.key == pygame.K_0:
self.target = np.array([0,0,0])
elif event.key == pygame.K_PLUS:
self.control_scaling += 0.1
self.control_scaling = min(self.control_scaling, 1.0)
print("control scaling = ", self.control_scaling)
elif event.key == pygame.K_MINUS:
self.control_scaling -= 0.1
self.control_scaling = max(self.control_scaling, 0.1)
print("control scaling = ", self.control_scaling)
elif event.key == pygame.K_ESCAPE:
print("quit!")
self.controlling = False
if self.rc_socket:
self.rc_socket.send('(0.0,0.0)\n')
self.anim_stopped = True
return
elif event.key == pygame.QUIT:
print("quit!")
self.controlling = False
if self.rc_socket:
self.rc_socket.send('(0.0,0.0)\n')
self.anim_stopped = True
return
2020-09-04 14:53:39 +00:00
if self.mpc:
x_pred = self.get_measurement_prediction()
tmpc_start = time.time()
error_pos = np.linalg.norm(x_pred[0:2] - self.target[0:2])
angles_unwrapped = np.unwrap([x_pred[2], self.target[2]]) # unwrap angle to avoid jump in data
error_ang = np.abs(angles_unwrapped[0] - angles_unwrapped[1])
#print("error pos = ", error_pos)
print(" error_ang = {}, target = {}, angle = {}".format(error_ang, self.target[2], x_pred[2]))
2020-09-04 14:53:39 +00:00
if error_pos > 0.1 or error_ang > 0.35:
2020-09-04 14:53:39 +00:00
# solve mpc open loop problem
res = self.ols.solve(x_pred, self.target)
2020-09-04 14:53:39 +00:00
#us1 = res[0]
#us2 = res[1]
us1 = res[0] * self.control_scaling
us2 = res[1] * self.control_scaling
2020-09-04 14:53:39 +00:00
#print("u = {}", (us1, us2))
# save open loop trajectories for plotting
self.mutex.acquire()
try:
self.ol_x = res[2]
self.ol_y = res[3]
finally:
self.mutex.release()
tmpc_end = time.time()
#print("---------------- mpc solution took {} seconds".format(tmpc_end - tmpc_start))
dt_mpc = time.time() - self.t
if dt_mpc < self.dt: # wait until next control can be applied
#print("sleeping for {} seconds...".format(self.dt - dt_mpc))
time.sleep(self.dt - dt_mpc)
else:
us1 = [0] * self.mstep
us2 = [0] * self.mstep
near_target += 1
robot.grid_pos = grid_pos
2020-09-04 14:53:39 +00:00
# send controls to the robot
for i in range(0, self.mstep): # option to use multistep mpc if len(range) > 1
u1 = us1[i]
u2 = us2[i]
if self.rc_socket:
self.rc_socket.send('({},{})\n'.format(u1, u2))
if i < self.mstep:
time.sleep(self.dt)
self.t = time.time() # save time the most recent control was applied
def get_measurement_prediction(self):
# get measurement
self.mutex.acquire()
try:
window = 3
last_measurement = copy.deepcopy(self.xms[-window:])
#print("last_measurements = {}".format(last_measurement))
#print("mean = {}".format(np.mean(last_measurement, axis=0)))
last_measurement = np.mean(last_measurement, axis=0)
last_time = copy.deepcopy(self.tms[-1])
finally:
self.mutex.release()
# prediction of state at time the mpc will terminate
self.r.set_f_params(np.array([self.u1 * self.omega_max, self.u2 * self.omega_max]))
self.r.set_initial_value(last_measurement, last_time)
x_pred = self.r.integrate(self.r.t + self.dt)
return x_pred
def get_measurement(self):
self.mutex.acquire()
try:
last_measurement = copy.deepcopy(self.xms[-1:])
finally:
self.mutex.release()
return last_measurement[0]
def pos_getter(self):
while True:
x_pred = self.get_measurement_prediction()
print("pos = ", x_pred)
def main(args):
parser = ArgumentParser()
parser.add_argument('id', metavar='id', type=str, help='marker id of the controlled robot')
parser.add_argument('ip', metavar='ip', type=str, help='ip address of the controlled robot')
args = parser.parse_args()
marker_id = int(args.id)
ip = args.ip
rospy.init_node('controller_node', anonymous=True)
rc = RemoteController(marker_id, ip)
pygame.init()
screenheight = 480
screenwidth = 640
pygame.display.set_mode([screenwidth, screenheight])
# print("waiting until track is completely detected")
# while not rc.track.track_complete:
# pass
#threading.Thread(target=rc.input_handling).start()
controller_thread = threading.Thread(target=rc.controller)
controller_thread.start()
#time.sleep(10)
#rc.ani()
if __name__ == '__main__':
main(sys.argv)