coupled robot control with new position estimator

This commit is contained in:
Simon Pirkelmann 2020-10-14 21:15:43 +02:00
parent 36f3ccbd6c
commit 149e9b3536
2 changed files with 321 additions and 138 deletions

View File

@ -0,0 +1,280 @@
## License: Apache 2.0. See LICENSE file in root directory.
## Copyright(c) 2015-2017 Intel Corporation. All Rights Reserved.
###############################################
## Open CV and Numpy integration ##
###############################################
import pyrealsense2 as rs
import numpy as np
import cv2
from cv2 import aruco
from shapely.geometry import LineString
import time
DS5_product_ids = ["0AD1", "0AD2", "0AD3", "0AD4", "0AD5", "0AF6", "0AFE", "0AFF", "0B00", "0B01", "0B03", "0B07","0B3A"]
def find_device_that_supports_advanced_mode() :
ctx = rs.context()
ds5_dev = rs.device()
devices = ctx.query_devices()
for dev in devices:
if dev.supports(rs.camera_info.product_id) and str(dev.get_info(rs.camera_info.product_id)) in DS5_product_ids:
if dev.supports(rs.camera_info.name):
print("Found device that supports advanced mode:", dev.get_info(rs.camera_info.name))
return dev
raise Exception("No device that supports advanced mode was found")
class ArucoEstimator:
grid_columns = 10
grid_rows = 8
corner_marker_ids = {
'a': 0,
'b': 1,
'c': 2,
'd': 3
}
robot_marker_ids = [12]
robot_marker_estimates = dict([(id, None) for id in robot_marker_ids])
angles = []
corner_estimates = {
'a': (None, 0), # (estimate, n_estimates)
'b': (None, 0),
'c': (None, 0),
'd': (None, 0)
}
def __init__(self):
if True: # check if realsense camera is connected
# Configure depth and color streams
self.pipeline = rs.pipeline()
config = rs.config()
# config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
# config.enable_stream(rs.stream.color, 1920, 1080, rs.format.bgr8, 30)
config.enable_stream(rs.stream.color, 1280, 720, rs.format.bgr8, 30)
# config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
# Start streaming
self.pipeline.start(config)
camera_intrinsics = self.pipeline.get_active_profile().get_stream(
rs.stream.color).as_video_stream_profile().get_intrinsics()
self.camera_matrix = np.zeros((3, 3))
self.camera_matrix[0][0] = camera_intrinsics.fx
self.camera_matrix[1][1] = camera_intrinsics.fy
self.camera_matrix[0][2] = camera_intrinsics.ppx
self.camera_matrix[1][2] = camera_intrinsics.ppy
self.dist_coeffs = np.array(camera_intrinsics.coeffs)
# more info: https://dev.intelrealsense.com/docs/projection-in-intel-realsense-sdk-20
else:
# use other camera
self.cv_camera = cv2.VideoCapture(0)
self.pipeline = None
# array containing pose estimates for each marker
estimates = {}
def run_tracking(self):
try:
while True:
if self.pipeline:
frames = self.pipeline.wait_for_frames()
color_frame = frames.get_color_frame()
if not color_frame:
continue
# Convert images to numpy arrays
color_image = np.asanyarray(color_frame.get_data())
else:
# Capture frame-by-frame
ret, color_image = self.cv_camera.read()
gray = cv2.cvtColor(color_image, cv2.COLOR_BGR2GRAY)
# aruco_dict = aruco.Dictionary_get(aruco.DICT_5X5_250)
aruco_dict = aruco.Dictionary_get(aruco.DICT_ARUCO_ORIGINAL)
parameters = aruco.DetectorParameters_create()
corners, ids, rejectedImgPoints = aruco.detectMarkers(gray, aruco_dict, parameters=parameters)
frame = aruco.drawDetectedMarkers(color_image.copy(), corners, ids)
if ids is not None:
for id, c in zip(ids, corners):
res = aruco.estimatePoseSingleMarkers(c, 0.10, self.camera_matrix, self.dist_coeffs)
rvecs = res[0]
tvecs = res[1]
self.update_estimate(id, rvecs, tvecs)
frame = self.draw_grid_lines(frame, corners, ids)
frame = self.draw_robot_pos(frame, corners, ids)
# Show images
cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE)
cv2.imshow('RealSense', frame)
cv2.waitKey(1)
finally:
# Stop streaming
self.pipeline.stop()
# import matplotlib.pyplot as plt
# plt.plot(playboard.angles)
# plt.show()
def update_estimate(self, id, rvec, tvec):
# update the marker estimate with new data
if id in self.corner_marker_ids.values():
# for corner markers we compute the mean of all measurements s.t. the position stabilizes over time
# (we assume the markers do not move)
corner = next(filter(lambda key: self.corner_marker_ids[key] == id, self.corner_marker_ids.keys())) # get corresponding corner to the detected marker
old_estimate = self.corner_estimates[corner][0]
n_estimates = self.corner_estimates[corner][1]
tvec_proj = tvec[0][0][0:2] # projection to get rid of z coordinate
tvec_proj = np.array((tvec_proj[0], -tvec_proj[1])) # flip y coordinate
if old_estimate is not None:
new_estimate = (n_estimates * old_estimate + tvec_proj) / (n_estimates + 1) # weighted update
else:
new_estimate = tvec_proj # first estimate
self.corner_estimates[corner] = (new_estimate, n_estimates + 1)
elif id in self.robot_marker_ids:
# for robot markers we extract x and y position as well as the angle
# here we could also implement a filter
x = tvec[0][0][0]
y = -tvec[0][0][1] # flip y coordinate
# compute angle
rot_mat, _ = cv2.Rodrigues(rvec[0][0])
pose_mat = cv2.hconcat((rot_mat, tvec[0][0]))
_, _, _, _, _, _, euler_angles = cv2.decomposeProjectionMatrix(pose_mat)
angle = -euler_angles[2][0] * np.pi / 180.0
self.angles.append(angle)
self.robot_marker_estimates[id[0]] = (x, y, angle)
def all_corners_detected(self):
# checks if all corner markers have been detected at least once
return not any([estimate[0] is None for estimate in self.corner_estimates.values()])
def get_pos_from_grid_point(self, x, y):
# returns the position for the given grid point based on the current corner estimates
assert x >= 0 and x < self.grid_columns
assert y >= 0 and y < self.grid_rows
assert self.all_corners_detected()
# compute column line
a = self.corner_estimates['a'][0]
b = self.corner_estimates['b'][0]
c = self.corner_estimates['c'][0]
d = self.corner_estimates['d'][0]
vab = b - a
vdc = c - d
column_line_top = a + (x + 0.5)/self.grid_columns * vab
column_line_bottom = d + (x + 0.5) / self.grid_columns * vdc
vad = d - a
vbc = c - b
row_line_top = a + (y + 0.5)/self.grid_rows * vad
row_line_bottom = b + (y + 0.5) / self.grid_rows * vbc
column_line = LineString([column_line_top, column_line_bottom])
row_line = LineString([row_line_top, row_line_bottom])
int_pt = column_line.intersection(row_line)
point_of_intersection = np.array([int_pt.x, int_pt.y])
return point_of_intersection
def get_grid_point_from_pos(self):
# return the nearest grid point for the given position estimate
pass
def print_corner_estimates(self):
for key, value in self.corner_estimates.items():
if value[0] is not None:
print("corner marker {} at pos {}".format(key, value[0]))
print()
def draw_corner_line(self, frame, corner_1, corner_2, corner_coords_dict):
# draws a line between the given markers onto the given frame
if corner_1 in corner_coords_dict and corner_2 in corner_coords_dict:
frame = cv2.line(frame, corner_coords_dict[corner_1], corner_coords_dict[corner_2], color=(0, 0, 255),
thickness=2)
return frame
def draw_grid_lines(self, frame, corners, ids):
# draws a grid onto the given frame
board_corners_pixel_coords = {}
for corner, id in self.corner_marker_ids.items():
try:
ind, _ = np.where(ids == id) # find index
ind = ind[0]
board_corners_pixel_coords[corner] = tuple(np.mean(corners[ind][0], axis=0))
except IndexError:
pass
frame = self.draw_corner_line(frame, 'a', 'b', board_corners_pixel_coords)
frame = self.draw_corner_line(frame, 'b', 'c', board_corners_pixel_coords)
frame = self.draw_corner_line(frame, 'c', 'd', board_corners_pixel_coords)
frame = self.draw_corner_line(frame, 'd', 'a', board_corners_pixel_coords)
if set(board_corners_pixel_coords.keys()) == set(self.corner_marker_ids.keys()): # all markers have been detected
# compute column line
a = np.array(board_corners_pixel_coords['a'])
b = np.array(board_corners_pixel_coords['b'])
c = np.array(board_corners_pixel_coords['c'])
d = np.array(board_corners_pixel_coords['d'])
vab = b - a
vdc = c - d
for x in range(1,self.grid_columns):
column_line_top = a + x / self.grid_columns * vab
column_line_bottom = d + x / self.grid_columns * vdc
frame = cv2.line(frame, tuple(column_line_top), tuple(column_line_bottom), color=(255, 0, 0),
thickness=1)
vad = d - a
vbc = c - b
for y in range(1, self.grid_rows):
row_line_top = a + y / self.grid_rows * vad
row_line_bottom = b + y / self.grid_rows * vbc
frame = cv2.line(frame, tuple(row_line_top), tuple(row_line_bottom), color=(255, 0, 0),
thickness=1)
return frame
def get_robot_state_estimate(self, id):
if id in self.robot_marker_estimates:
if self.robot_marker_estimates[id] is not None:
return self.robot_marker_estimates[id]
else:
print(f"error: no estimate available for robot {id}")
else:
print(f"error: invalid robot id {id}")
def draw_robot_pos(self, frame, corners, ids):
# draws information about the robot positions onto the given frame
robot_corners_pixel_coords = {}
for id, estimate in self.robot_marker_estimates.items():
try:
ind, _ = np.where(ids == id) # find index
ind = ind[0]
robot_corners_pixel_coords[id] = tuple(np.mean(corners[ind][0], axis=0))
except IndexError:
pass
for id, coord in robot_corners_pixel_coords.items():
x = self.robot_marker_estimates[id][0]
y = self.robot_marker_estimates[id][1]
angle = self.robot_marker_estimates[id][2]
frame = cv2.putText(frame, "pos = ({:5.3f}, {:5.3f}), ang = {:5.3f}".format(x, y, angle), coord, cv2.FONT_HERSHEY_SIMPLEX, 0.50, (0,255,0))
return frame
if __name__ == "__main__":
playboard = Board()

View File

@ -26,34 +26,36 @@ import time
from casadi_opt import OpenLoopSolver from casadi_opt import OpenLoopSolver
from marker_pos_angle.msg import id_pos_angle #from marker_pos_angle.msg import id_pos_angle
from collections import OrderedDict from collections import OrderedDict
from argparse import ArgumentParser from argparse import ArgumentParser
import opencv_viewer_example
MSGLEN = 64 MSGLEN = 64
def myreceive(sock): def myreceive(sock):
chunks = [] chunks = []
bytes_recd = 0 bytes_recd = 0
while bytes_recd < MSGLEN: while bytes_recd < MSGLEN:
chunk = sock.recv(min(MSGLEN - bytes_recd, 2048)) chunk = sock.recv(1)
if chunk == b'': if chunk == b'':
raise RuntimeError("socket connection broken") raise RuntimeError("socket connection broken")
chunks.append(chunk) chunks.append(chunk)
bytes_recd = bytes_recd + len(chunk) bytes_recd = bytes_recd + len(chunk)
if chunk[-1] == '\n': if chunks[-1] == b'\n':
break break
return b''.join(chunks) return b''.join(chunks)
class Robot: class Robot:
def __init__(self, id, ip): def __init__(self, id, ip, grid_pos = (0,0,0)):
self.pos = None self.pos = None
self.orient = None self.orient = None
self.grid_pos = (0,0,0) self.grid_pos = grid_pos
self.id = id self.id = id
@ -111,8 +113,13 @@ class RemoteController:
self.anim_stopped = False self.anim_stopped = False
self.robots = [Robot(11, '192.168.1.11'), Robot(14, '192.168.1.14')] # self.robots = #[Robot(11, '192.168.1.11', (6, -3, np.pi)), Robot(12, '192.168.1.12', (6, -3, np.pi)),
#self.robots = [Robot(11, '192.168.1.101')] # Robot(13, '192.168.1.13', (6, -3, np.pi)), Robot(14, '192.168.1.14', (6, -2, np.pi))]
#self.robots = [Robot(13, '192.168.1.13', (6, -3, np.pi))]
#self.robots = []
#self.robots = [Robot(11, '192.168.1.11', (6,-3,0)), Robot(14, '192.168.1.14', (6,3,0))]
#self.robots = [Robot(11, '192.168.1.11'), Robot(14, '192.168.1.14')]
self.robots = [Robot(12, '192.168.1.12')]
#self.robots = [Robot(15, '192.168.1.102')] #self.robots = [Robot(15, '192.168.1.102')]
#self.robots = [Robot(id, ip)] #self.robots = [Robot(id, ip)]
@ -148,42 +155,14 @@ class RemoteController:
self.mutex = threading.Lock() self.mutex = threading.Lock()
# ROS subscriber for detected markers # ROS subscriber for detected markers
marker_sub = rospy.Subscriber("/marker_id_pos_angle", id_pos_angle, self.measurement_callback) self.estimator = opencv_viewer_example.ArucoEstimator()
self.estimator_thread = threading.Thread(target=self.estimator.run_tracking)
self.estimator_thread.start()
# pid parameters # pid parameters
self.controlling = False self.controlling = False
# animation
self.fig = plt.figure()
self.ax = self.fig.add_subplot(2,2,1)
self.ax2 = self.fig.add_subplot(2, 2, 2)
self.ax3 = self.fig.add_subplot(2, 2, 4)
self.xdata, self.ydata = [], []
self.line, = self.ax.plot([],[], color='grey', linestyle=':')
self.line_sim, = self.ax.plot([], [])
self.line_ol, = self.ax.plot([],[], color='green', linestyle='--')
self.dirm, = self.ax.plot([], [])
self.dirs, = self.ax.plot([], [])
self.line_x, = self.ax2.plot([],[])
self.line_y, = self.ax3.plot([], [])
self.track_line_inner, = self.ax.plot([], [])
self.track_line_outer, = self.ax.plot([], [])
self.ax.set_xlabel('x-position')
self.ax.set_ylabel('y-position')
self.ax.grid()
self.ax2.set_xlabel('Zeit t')
self.ax2.set_ylabel('x-position')
self.ax2.grid()
self.ax3.set_xlabel('Zeit t')
self.ax3.set_ylabel('y-position')
self.ax3.grid()
self.mstep = 2 self.mstep = 2
self.ols = OpenLoopSolver(N=20, T=1.0) self.ols = OpenLoopSolver(N=20, T=1.0)
self.ols.setup() self.ols.setup()
@ -194,96 +173,10 @@ class RemoteController:
# integrator # integrator
self.r = scipy.integrate.ode(f_ode) self.r = scipy.integrate.ode(f_ode)
self.omega_max = 5.0 self.omega_max = 5.0
self.control_scaling = 0.3 self.control_scaling = 0.1
#self.omega_max = 13.32 #self.omega_max = 13.32
def ani(self):
print("starting animation")
self.ani = anim.FuncAnimation(self.fig, init_func=self.ani_init, func=self.ani_update, interval=10, blit=True)
plt.ion()
plt.show(block=True)
def ani_init(self):
self.ax.set_xlim(-2, 2)
self.ax.set_ylim(-2, 2)
self.ax.set_aspect('equal', adjustable='box')
self.ax2.set_ylim(-2, 2)
self.ax2.set_xlim(0, 10)
self.ax3.set_ylim(-2, 2)
self.ax3.set_xlim(0, 10)
self.track_line_inner.set_data(self.track.inner_poly.exterior.xy)
self.track_line_outer.set_data(self.track.outer_poly.exterior.xy)
return self.line, self.line_sim, self.dirm, self.dirs, self.line_ol,\
self.track_line_inner, self.track_line_outer, self.line_x,self.line_y,
def ani_update(self, frame):
if self.anim_stopped:
self.ani.event_source.stop()
sys.exit(0)
#print("plotting")
self.mutex.acquire()
try:
# copy data for plot from global arrays
if self.tms is not None:
tm_local = deepcopy(self.tms)
xm_local = deepcopy(self.xms)
if len(tm_local) > 0:
# plot path of the robot
self.line.set_data(xm_local[:,0], xm_local[:,1])
# compute and plot direction the robot is facing
a = xm_local[-1, 0]
b = xm_local[-1, 1]
a2 = a + np.cos(xm_local[-1, 2]) * 0.2
b2 = b + np.sin(xm_local[-1, 2]) * 0.2
self.dirm.set_data(np.array([a, a2]), np.array([b, b2]))
n_plot = 300
if len(tm_local) > n_plot:
# plot x and y coordinate
self.line_x.set_data(tm_local[-n_plot:] - (tm_local[-1] - 10), xm_local[-n_plot:,0])
self.line_y.set_data(tm_local[-n_plot:] - (tm_local[-1] - 10), xm_local[-n_plot:, 1])
ts_local = deepcopy(self.ts)
xs_local = deepcopy(self.xs)
if len(ts_local) > 0:
# plot simulated path of the robot
self.line_sim.set_data(xs_local[:,0], xs_local[:,1])
# compute and plot direction the robot is facing
a = xs_local[-1, 0]
b = xs_local[-1, 1]
a2 = a + np.cos(xs_local[-1, 2]) * 0.2
b2 = b + np.sin(xs_local[-1, 2]) * 0.2
self.dirs.set_data(np.array([a, a2]), np.array([b, b2]))
ol_x_local = deepcopy(self.ol_x)
ol_y_local = deepcopy(self.ol_y)
if ol_x_local is not None:
self.line_ol.set_data(ol_x_local, ol_y_local)
else:
self.line_ol.set_data([],[])
finally:
self.mutex.release()
return self.line, self.line_sim, self.dirm, self.dirs, self.line_ol, self.track_line_inner, self.track_line_outer,\
self.line_x, self.line_y,
def measurement_callback(self, data): def measurement_callback(self, data):
#print(data) #print(data)
@ -330,7 +223,7 @@ class RemoteController:
inputs = data.split(b',') inputs = data.split(b',')
cmd = inputs[0] cmd = inputs[0]
cmd = cmd.strip() cmd = cmd.strip().decode()
if len(inputs) > 1: if len(inputs) > 1:
if cmd in self.valid_cmds: if cmd in self.valid_cmds:
@ -341,13 +234,14 @@ class RemoteController:
clientsocket.sendall(b'Could not read robot id!\n') clientsocket.sendall(b'Could not read robot id!\n')
if robot_id in self.robot_ids: if robot_id in self.robot_ids:
if cmd == 'get position': if cmd == b'get position':
clientsocket.sendall(bytes('{}\n'.format(self.robot_ids[robot_id].grid_pos))) clientsocket.sendall(bytes('{}\n'.format(self.robot_ids[robot_id].grid_pos)))
elif cmd == 'set position': elif cmd == b'set position':
try: try:
pos_data = ",".join(inputs[2:]) pos_data = ",".join(inputs[2:])
new_grid_pos = tuple(map(lambda x: int(x[1]) if x[0] < 2 else float(x[1]), enumerate(pos_data.strip().strip('()').split(',')))) new_grid_pos = tuple(map(lambda x: int(x[1]) if x[0] < 2 else float(x[1]), enumerate(pos_data.strip().strip('()').split(','))))
self.robot_ids[robot_id].grid_pos = new_grid_pos self.robot_ids[robot_id].grid_pos = new_grid_pos
clientsocket.sendall(b'OK\n')
except IndexError as e: except IndexError as e:
print("could not set grid position!") print("could not set grid position!")
clientsocket.sendall(bytes( clientsocket.sendall(bytes(
@ -366,7 +260,7 @@ class RemoteController:
else: else:
clientsocket.sendall(b'Invalid command!\n') clientsocket.sendall(b'Invalid command!\n')
else: # len(inputs) <= 1 else: # len(inputs) <= 1
if 'quit' in inputs[0]: if b'quit' in inputs[0]:
clientsocket.close() clientsocket.close()
self.comm_socket.close() self.comm_socket.close()
connected = False connected = False
@ -375,8 +269,6 @@ class RemoteController:
print("could not process command!") print("could not process command!")
clientsocket.sendall(b'Could not process request!\n') clientsocket.sendall(b'Could not process request!\n')
except RuntimeError: except RuntimeError:
print("disconnected") print("disconnected")
connected = False connected = False
@ -418,7 +310,9 @@ class RemoteController:
grid_pos = (new_x, new_y, new_angle) grid_pos = (new_x, new_y, new_angle)
print("new grid pos for robot {}: {}\n".format(robot_id, grid_pos)) print("new grid pos for robot {}: {}\n".format(robot_id, grid_pos))
self.target = np.array((0.25 * grid_pos[0], 0.25 * grid_pos[1], grid_pos[2])) target_pos = self.estimator.get_pos_from_grid_point(new_x, new_y)
self.target = np.array((target_pos[0], target_pos[1], grid_pos[2]))
#np.array((0.25 * grid_pos[0], 0.25 * grid_pos[1], grid_pos[2]))
self.pid = False self.pid = False
self.mpc = True self.mpc = True
@ -464,7 +358,8 @@ class RemoteController:
return return
if self.mpc: if self.mpc:
x_pred = self.get_measurement_prediction(robot_id) #x_pred = self.get_measurement_prediction(robot_id)
x_pred = self.get_measurement()
tmpc_start = time.time() tmpc_start = time.time()
@ -474,7 +369,8 @@ class RemoteController:
#print("error pos = ", error_pos) #print("error pos = ", error_pos)
#print("error_pos = {}, error_ang = {}".format(error_pos, error_ang)) #print("error_pos = {}, error_ang = {}".format(error_pos, error_ang))
if error_pos > 0.075 or error_ang > 0.35: #if error_pos > 0.075 or error_ang > 0.35:
if error_pos > 0.05 or error_ang > 0.2:
# solve mpc open loop problem # solve mpc open loop problem
res = self.ols.solve(x_pred, self.target) res = self.ols.solve(x_pred, self.target)
@ -510,7 +406,7 @@ class RemoteController:
u1 = us1[i] u1 = us1[i]
u2 = us2[i] u2 = us2[i]
if self.robot_ids[robot_id].socket: if self.robot_ids[robot_id].socket:
self.robot_ids[robot_id].socket.send('({},{})\n'.format(u1, u2)) self.robot_ids[robot_id].socket.send('({},{})\n'.format(u1, u2).encode())
if i < self.mstep: if i < self.mstep:
time.sleep(self.dt) time.sleep(self.dt)
self.t = time.time() # save time the most recent control was applied self.t = time.time() # save time the most recent control was applied
@ -538,7 +434,7 @@ class RemoteController:
return x_pred return x_pred
def get_measurement(self): def get_measurement_old(self):
self.mutex.acquire() self.mutex.acquire()
try: try:
last_measurement = copy.deepcopy(self.xms[-1:]) last_measurement = copy.deepcopy(self.xms[-1:])
@ -546,6 +442,9 @@ class RemoteController:
self.mutex.release() self.mutex.release()
return last_measurement[0] return last_measurement[0]
def get_measurement(self):
return np.array(self.estimator.get_robot_state_estimate(12))
def pos_getter(self): def pos_getter(self):
while True: while True:
x_pred = self.get_measurement_prediction() x_pred = self.get_measurement_prediction()
@ -562,7 +461,7 @@ def main(args):
ip = args.ip ip = args.ip
rospy.init_node('controller_node', anonymous=True) #rospy.init_node('controller_node', anonymous=True)
rc = RemoteController(marker_id, ip) rc = RemoteController(marker_id, ip)
@ -576,6 +475,10 @@ def main(args):
# while not rc.track.track_complete: # while not rc.track.track_complete:
# pass # pass
time.sleep(1)
#threading.Thread(target=rc.input_handling).start() #threading.Thread(target=rc.input_handling).start()
controller_thread = threading.Thread(target=rc.controller) controller_thread = threading.Thread(target=rc.controller)
controller_thread.start() controller_thread.start()