parameter tuning. works well with control scaling of 0.3

This commit is contained in:
Simon Pirkelmann 2020-09-09 17:33:13 +02:00
parent 826fa4be0f
commit 280aee75ee
2 changed files with 125 additions and 223 deletions

View File

@ -142,7 +142,7 @@ class OpenLoopSolver:
#return #return
def solve(self, x0, target, obstacles, turn=False): def solve(self, x0, target):
angles_unwrapped = np.unwrap([x0[2], target[2]]) # unwrap angle to avoid jump in data angles_unwrapped = np.unwrap([x0[2], target[2]]) # unwrap angle to avoid jump in data
x0[2] = angles_unwrapped[0] x0[2] = angles_unwrapped[0]
@ -242,24 +242,6 @@ class OpenLoopSolver:
# self.opti.subject_to(X[2,:]<=4) # Time must be positive # self.opti.subject_to(X[2,:]<=4) # Time must be positive
# self.opti.subject_to(X[2,:]>=-2) # Time must be positive # self.opti.subject_to(X[2,:]>=-2) # Time must be positive
# avoid obstacle
for o in obstacles:
p = obstacles[o].pos
r = obstacles[o].radius
if p is not None:
for k in range(1,self.N):
self.opti.subject_to((self.X[0,k]-p[0])**2 + (self.X[1,k]-p[1])**2 + self.slack > r**2)
# keep inside track
# TODO
# track_ids = track.inner.keys()
# a = track.outer[track_ids[0]]
# b = track.outer[track_ids[1]]
# c = track.outer[track_ids[2]]
# d = track.outer[track_ids[3]]
#
# for k in range(1, self.N):
# self.opti.subject_to(self.opti.subject_to(self.X))
posx = self.X[0, :] posx = self.X[0, :]
posy = self.X[1, :] posy = self.X[1, :]
angle = self.X[2, :] angle = self.X[2, :]

View File

@ -32,12 +32,28 @@ from collections import OrderedDict
from argparse import ArgumentParser from argparse import ArgumentParser
MSGLEN = 32
def myreceive(sock):
chunks = []
bytes_recd = 0
while bytes_recd < MSGLEN:
chunk = sock.recv(min(MSGLEN - bytes_recd, 2048))
if chunk == b'':
raise RuntimeError("socket connection broken")
chunks.append(chunk)
bytes_recd = bytes_recd + len(chunk)
if chunk[-1] == '\n':
break
return b''.join(chunks)
class Robot: class Robot:
def __init__(self, id, ip): def __init__(self, id, ip):
self.pos = None self.pos = None
self.orient = None self.orient = None
self.grid_pos = (0,0,0)
self.id = id self.id = id
@ -46,63 +62,6 @@ class Robot:
self.ip = ip self.ip = ip
class Obstacle:
def __init__(self, id, radius):
self.id = id
self.pos = None
self.radius = radius
class Track:
def __init__(self):
# ids in clockwise direction
self.inner = OrderedDict()
self.inner[0] = None
self.inner[1] = None
self.inner[2] = None
self.inner[3] = None
self.outer = OrderedDict()
self.outer[4] = None
self.outer[5] = None
self.outer[6] = None
self.outer[7] = None
self.track_complete = False
self.inner_poly = None
self.outer_poly = None
def set_id(self, d):
if not self.track_complete:
if d.id in self.inner:
print("Detected marker {} at pos {}".format(d.id, (d.x,d.y)))
self.inner[d.id] = (d.x, d.y)
elif d.id in self.outer:
print("Detected marker {} at pos {}".format(d.id, (d.x, d.y)))
self.outer[d.id] = (d.x, d.y)
else:
print("Unknown marker!")
else:
return
if not None in self.inner.values() and not None in self.outer.values():
print("Track marker positions detected!")
self.track_complete = True
self.inner_poly = Polygon(self.inner.values())
self.outer_poly = Polygon(self.outer.values())
def plot_track(self):
if self.track_complete:
plt.figure(2)
x_in, y_in = self.inner_poly.exterior.xy
x_out, y_out = self.outer_poly.exterior.xy
plt.plot(x_in, y_in)
plt.plot(x_out, y_out)
else:
print("plot is not complete yet!")
def f_ode(t, x, u): def f_ode(t, x, u):
# dynamical model of the two-wheeled robot # dynamical model of the two-wheeled robot
# TODO: find exact values for these parameters # TODO: find exact values for these parameters
@ -138,8 +97,7 @@ class RemoteController:
for r in self.robots: for r in self.robots:
self.robot_ids[r.id] = r self.robot_ids[r.id] = r
self.valid_cmds = ['forward', 'backward', 'turn left', 'turn right']
self.track = Track()
# connect to robot # connect to robot
self.rc_socket = socket.socket() self.rc_socket = socket.socket()
@ -151,6 +109,13 @@ class RemoteController:
print("could not connect to socket") print("could not connect to socket")
sys.exit(1) sys.exit(1)
# socket for movement commands
self.comm_socket = socket.socket()
self.comm_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
#self.comm_socket.bind((socket.gethostname(), 1337))
self.comm_socket.bind(('', 1337))
self.comm_socket.listen(5)
self.t = time.time() self.t = time.time()
@ -222,6 +187,7 @@ class RemoteController:
# integrator # integrator
self.r = scipy.integrate.ode(f_ode) self.r = scipy.integrate.ode(f_ode)
self.omega_max = 5.0 self.omega_max = 5.0
self.control_scaling = 0.2
#self.omega_max = 13.32 #self.omega_max = 13.32
@ -341,132 +307,114 @@ class RemoteController:
finally: finally:
self.mutex.release() self.mutex.release()
# detect track
if data.id in self.track.inner.keys() or data.id in self.track.outer.keys():
self.track.set_id(data)
def controller(self): def controller(self):
print("starting control") print("starting control")
targets = {} running = True
markers_in = self.track.inner.values() while running:
markers_out = self.track.outer.values() (clientsocket, address) = self.comm_socket.accept()
# find targets: connected = True
# generate waypoints while connected:
# lamb = 0.5 try:
# j = 0 data = myreceive(clientsocket)
# for i in range(0,4): print(data)
# p = np.array(markers_in[i]) + lamb * (np.array(markers_out[i]) - np.array(markers_in[i]))
# targets[j] = (p[0],p[1], 0.0)
# j += 1
# if i < 3:
# mean_in = (np.array(markers_in[i]) + np.array(markers_in[i+1])) * 0.5
# mean_out = (np.array(markers_out[i]) + np.array(markers_out[i+1])) * 0.5
# mean = mean_in + (1.0 - lamb) * (mean_out - mean_in)
# targets[j] = (mean[0], mean[1], 0.0)
# j += 1
try:
robot_id, cmd = data.split(',')
robot_id = int(robot_id)
cmd = cmd.strip()
# final connection between first and last marker if robot_id in self.robot_ids and cmd in self.valid_cmds:
#mean_in = (np.array(markers_in[3]) + np.array(markers_in[0])) * 0.5 self.mpc_control(robot_id, cmd)
#mean_out = (np.array(markers_out[3]) + np.array(markers_out[0])) * 0.5 elif cmd == 'quit':
#mean = mean_in + (1.0 - lamb) * (mean_out - mean_in) clientsocket.close()
#targets[j] = (mean[0], mean[1], 0.0) self.comm_socket.close()
connected = False
running = False
else:
print("invalid command or robot id!")
except ValueError:
print("could not process command!")
grid_pos = (0,0, 0) except RuntimeError:
target_pos = np.array((0.0, 0.0, 0.0)) print("disconnected")
connected = False
clientsocket.close()
auto_control = False def mpc_control(self, robot_id, cmd):
current_target = 0 robot = self.robot_ids[robot_id] # get robot to be controlled
grid_pos = robot.grid_pos # grid position of the robot
control_scaling = 0.4
self.pid = False # compute new grid position and orientation
self.mpc = True if cmd == 'forward':
new_x = grid_pos[0] + 1 * np.cos(grid_pos[2])
new_y = grid_pos[1] + 1 * np.sin(grid_pos[2])
new_angle = grid_pos[2]
elif cmd == 'backward':
new_x = grid_pos[0] - 1 * np.cos(grid_pos[2])
new_y = grid_pos[1] - 1 * np.sin(grid_pos[2])
new_angle = grid_pos[2]
elif cmd == 'turn left':
new_x = grid_pos[0]
new_y = grid_pos[1]
new_angle = np.unwrap([0, grid_pos[2] + np.pi / 2])[1]
elif cmd == 'turn right':
new_x = grid_pos[0]
new_y = grid_pos[1]
new_angle = np.unwrap([0, grid_pos[2] - np.pi / 2])[1]
else:
print("unknown command!")
sys.exit(1)
integ = 0.0 grid_pos = (new_x, new_y, new_angle)
print("new grid pos for robot {}: {}".format(robot_id, grid_pos))
while True: self.target = np.array((0.25 * grid_pos[0], 0.25 * grid_pos[1], grid_pos[2]))
# open loop controller
events = pygame.event.get()
move = 0 self.pid = False
turn = 0 self.mpc = True
for event in events: near_target = 0
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_UP:
self.controlling = True
self.t = time.time()
elif event.key == pygame.K_DOWN:
self.controlling = False
if self.rc_socket:
self.rc_socket.send('(0.0,0.0)\n')
elif event.key == pygame.K_0:
grid_pos = (0,0, 0)
elif event.key == pygame.K_w:
move = 1
turn = 0
elif event.key == pygame.K_s:
move = -1
turn = 0
elif event.key == pygame.K_a:
turn = 1
move = 0
integ = 0
elif event.key == pygame.K_d:
turn = -1
move = 0
elif event.key == pygame.K_r:
turn = 2
elif event.key == pygame.K_p:
self.pid = True
elif event.key == pygame.K_SPACE:
auto_control = not auto_control
if auto_control:
self.target = targets[current_target]
elif event.key == pygame.K_PLUS:
control_scaling += 0.1
control_scaling = min(control_scaling, 1.0)
elif event.key == pygame.K_MINUS:
control_scaling -= 0.1
control_scaling = max(control_scaling, 0.3)
elif event.key == pygame.K_ESCAPE:
print("quit!")
self.controlling = False
if self.rc_socket:
self.rc_socket.send('(0.0,0.0)\n')
self.anim_stopped = True
return
elif event.key == pygame.QUIT:
print("quit!")
self.controlling = False
if self.rc_socket:
self.rc_socket.send('(0.0,0.0)\n')
self.anim_stopped = True
return
# compute new grid position and orientation while near_target < 5:
# open loop controller
events = pygame.event.get()
if move != 0: for event in events:
new_x = grid_pos[0] + move * np.cos(grid_pos[2]) if event.type == pygame.KEYDOWN:
new_y = grid_pos[1] + move * np.sin(grid_pos[2]) if event.key == pygame.K_UP:
new_angle = grid_pos[2] self.controlling = True
grid_pos = (new_x, new_y, new_angle) self.t = time.time()
elif event.key == pygame.K_DOWN:
self.controlling = False
if self.rc_socket:
self.rc_socket.send('(0.0,0.0)\n')
elif event.key == pygame.K_0:
self.target = np.array([0,0,0])
elif event.key == pygame.K_PLUS:
self.control_scaling += 0.1
self.control_scaling = min(self.control_scaling, 1.0)
print("control scaling = ", self.control_scaling)
elif event.key == pygame.K_MINUS:
self.control_scaling -= 0.1
self.control_scaling = max(self.control_scaling, 0.1)
print("control scaling = ", self.control_scaling)
elif event.key == pygame.K_ESCAPE:
print("quit!")
self.controlling = False
if self.rc_socket:
self.rc_socket.send('(0.0,0.0)\n')
self.anim_stopped = True
return
elif event.key == pygame.QUIT:
print("quit!")
self.controlling = False
if self.rc_socket:
self.rc_socket.send('(0.0,0.0)\n')
self.anim_stopped = True
return
print(grid_pos)
elif turn != 0:
new_x = grid_pos[0]
new_y = grid_pos[1]
new_angle = np.unwrap([0, grid_pos[2] + turn * np.pi/2])[1]
grid_pos = (new_x, new_y, new_angle)
print(grid_pos)
self.target = np.array((0.25*grid_pos[0], 0.25*grid_pos[1], grid_pos[2]))
if self.controlling:
if self.mpc: if self.mpc:
x_pred = self.get_measurement_prediction() x_pred = self.get_measurement_prediction()
@ -478,15 +426,14 @@ class RemoteController:
#print("error pos = ", error_pos) #print("error pos = ", error_pos)
print(" error_ang = {}, target = {}, angle = {}".format(error_ang, self.target[2], x_pred[2])) print(" error_ang = {}, target = {}, angle = {}".format(error_ang, self.target[2], x_pred[2]))
turning = turn != 0 if error_pos > 0.1 or error_ang > 0.35:
if error_pos > 0.1 or error_ang > 0.4:
# solve mpc open loop problem # solve mpc open loop problem
res = self.ols.solve(x_pred, self.target, [], turning) res = self.ols.solve(x_pred, self.target)
#us1 = res[0] #us1 = res[0]
#us2 = res[1] #us2 = res[1]
us1 = res[0] * control_scaling us1 = res[0] * self.control_scaling
us2 = res[1] * control_scaling us2 = res[1] * self.control_scaling
#print("u = {}", (us1, us2)) #print("u = {}", (us1, us2))
# save open loop trajectories for plotting # save open loop trajectories for plotting
@ -507,6 +454,9 @@ class RemoteController:
us1 = [0] * self.mstep us1 = [0] * self.mstep
us2 = [0] * self.mstep us2 = [0] * self.mstep
near_target += 1
robot.grid_pos = grid_pos
# send controls to the robot # send controls to the robot
for i in range(0, self.mstep): # option to use multistep mpc if len(range) > 1 for i in range(0, self.mstep): # option to use multistep mpc if len(range) > 1
u1 = us1[i] u1 = us1[i]
@ -516,36 +466,6 @@ class RemoteController:
if i < self.mstep: if i < self.mstep:
time.sleep(self.dt) time.sleep(self.dt)
self.t = time.time() # save time the most recent control was applied self.t = time.time() # save time the most recent control was applied
else:
if self.pid:
x_pred = self.get_measurement()
# compute angle difference
d_angle = x_pred[2] - self.target[2]
dt = time.time() - self.t
integ += d_angle * dt
#print(d_angle)
K = 0.2
I = 0.15
pp = d_angle * K
ii = integ * I
u1 = pp + ii
u2 = -u1
print("e = {}, dt = {}, P = {}, I = {}, u = {}".format(d_angle, dt, pp, ii, (u1,u2)))
self.t = time.time()
self.rc_socket.send('({},{})\n'.format(u1, u2))
time.sleep(0.025)
#self.rc_socket.send('({},{})\n'.format(0, 0))
#time.sleep(0.1)
#self.pid = False
def get_measurement_prediction(self): def get_measurement_prediction(self):