replaced cv2.aruco with python bindings for new aruco version

This commit is contained in:
Simon Pirkelmann 2020-10-23 20:43:45 +02:00
parent 0bc6b68a20
commit 280fb10427

View File

@ -1,13 +1,16 @@
import pyrealsense2 as rs
import numpy as np
import cv2
from cv2 import aruco
import os
from shapely.geometry import LineString
from queue import Queue
class ArucoEstimator:
import aruco
class ArucoEstimator(socketserver.BaseRequestHandler):
corner_marker_ids = {
'a': 0,
'a': 15,
'b': 1,
'c': 2,
'd': 3
@ -59,6 +62,25 @@ class ArucoEstimator:
self.cv_camera = cv2.VideoCapture(0)
self.pipeline = None
# create detector and get parameters
self.detector = aruco.MarkerDetector()
#self.detector.setDictionary('ARUCO_MIP_36h12')
#self.detector.setDictionary('ARUCO_MIP_16h3')
#self.detector.setDictionary('ARUCO')
#self.detector.setDetectionMode(aruco.DM_NORMAL, 0.05)
#self.detector.setDetectionMode(aruco.DM_VIDEO_FAST, 0.05)
self.detector_params = self.detector.getParameters()
# print detector parameters
print("detector params:")
for val in dir(self.detector_params):
if not val.startswith("__"):
print("\t{} : {}".format(val, self.detector_params.__getattribute__(val)))
self.camparam = aruco.CameraParameters()
self.camparam.readFromXMLFile(os.path.join(os.path.dirname(__file__), "dfk72_6mm_param2.yml"))
def mouse_callback(self, event, px, py, flags, param):
if event == 1:
if self.all_corners_detected():
@ -107,38 +129,39 @@ class ArucoEstimator:
gray = cv2.cvtColor(color_image, cv2.COLOR_BGR2GRAY)
#aruco_dict = aruco.Dictionary_get(aruco.DICT_APRILTAG_16H5)
#aruco_dict = aruco.Dictionary_get(aruco.DICT_7X7_50)
#aruco_dict = aruco.Dictionary_get(aruco.DICT_4X4_50)
aruco_dict = aruco.Dictionary_get(aruco.DICT_5X5_1000)
#aruco_dict = aruco.Dictionary_get(aruco.DICT_ARUCO_ORIGINAL) # fast
parameters = aruco.DetectorParameters_create()
corners, ids, rejectedImgPoints = aruco.detectMarkers(gray, aruco_dict, parameters=parameters)
frame = aruco.drawDetectedMarkers(color_image.copy(), corners, ids)
# run aruco marker detection
detected_markers = self.detector.detect(gray)
if ids is not None:
for id, corner in zip(ids, corners):
if id in self.corner_marker_ids.values():
marker_size = 0.1
# extract data for detected markers
detected_marker_data = {}
for marker in detected_markers:
detected_marker_data[marker.id] = {'center': marker.getCenter()}
if marker.id > 0:
if marker.id in self.corner_marker_ids.values():
marker.calculateExtrinsics(0.1, self.camparam)
else:
marker_size = 0.07
corner_pixel_coord = np.mean(corner[0], axis=0)
# res = aruco.estimatePoseSingleMarkers(corner, marker_size, self.camera_matrix, self.dist_coeffs)
# rvecs = res[0][0][0]
# tvecs = res[1][0][0]
#
# self.update_estimate(id[0], corner_pixel_coord, rvecs, tvecs)
marker.calculateExtrinsics(0.07, self.camparam)
detected_marker_data[marker.id]['Rvec'] = marker.Rvec
detected_marker_data[marker.id]['Tvec'] = marker.Tvec
frame = self.draw_grid_lines(frame, corners, ids)
frame = self.draw_robot_pos(frame, corners, ids)
if marker.id > 0: # draw markers onto the image
marker.draw(color_image, np.array([255, 255, 255]), 2, True)
aruco.CvDrawingUtils.draw3dAxis(color_image, self.camparam, marker.Rvec, marker.Tvec, .1)
# store data
for id, data in detected_marker_data.items():
self.update_estimate(id, data['center'], data['Rvec'], data['Tvec'])
# draw grid
color_image = self.draw_grid_lines(color_image, detected_marker_data)
color_image = self.draw_robot_pos(color_image, detected_marker_data)
# Show images
cv2.imshow('RoboRally', frame)
cv2.imshow('RoboRally', color_image)
key = cv2.waitKey(1)
if key > 0:
self.event_queue.put(('key', key))
print('key = ', key)
if key == ord('q'):
running = False
finally:
@ -147,6 +170,7 @@ class ArucoEstimator:
# Stop streaming
self.pipeline.stop()
def update_estimate(self, id, pixel_coord, rvec, tvec):
# update the marker estimate with new data
if id in self.corner_marker_ids.values():
@ -156,8 +180,9 @@ class ArucoEstimator:
old_estimate = self.corner_estimates[corner]['real_world_estimate']
n_estimates = self.corner_estimates[corner]['n_estimates']
tvec_proj = tvec[0:2] # projection to get rid of z coordinate
tvec_proj = np.array((tvec_proj[0], -tvec_proj[1])) # flip y coordinate
x = tvec[0][0]
y = -tvec[1][0] # flip y coordinate
tvec_proj = np.array([x, y])
if old_estimate is not None:
new_estimate = (n_estimates * old_estimate + tvec_proj) / (n_estimates + 1) # weighted update
else:
@ -169,8 +194,8 @@ class ArucoEstimator:
elif id in self.robot_marker_ids:
# for robot markers we extract x and y position as well as the angle
# here we could also implement a filter
x = tvec[0]
y = -tvec[1] # flip y coordinate
x = tvec[0][0]
y = -tvec[1][0] # flip y coordinate
# compute angle
rot_mat, _ = cv2.Rodrigues(rvec)
@ -266,16 +291,12 @@ class ArucoEstimator:
thickness=2)
return frame
def draw_grid_lines(self, frame, corners, ids):
def draw_grid_lines(self, frame, detected_marker_data):
# draws a grid onto the given frame
board_corners_pixel_coords = {}
for corner, id in self.corner_marker_ids.items():
try:
ind, _ = np.where(ids == id) # find index
ind = ind[0]
board_corners_pixel_coords[corner] = tuple(np.mean(corners[ind][0], axis=0))
except IndexError:
pass
if id in detected_marker_data.keys():
board_corners_pixel_coords[corner] = tuple(detected_marker_data[id]['center'])
frame = self.draw_corner_line(frame, 'a', 'b', board_corners_pixel_coords)
frame = self.draw_corner_line(frame, 'b', 'c', board_corners_pixel_coords)
@ -318,16 +339,12 @@ class ArucoEstimator:
print(f"error: invalid robot id {id}")
return None
def draw_robot_pos(self, frame, corners, ids):
def draw_robot_pos(self, frame, detected_marker_data):
# draws information about the robot positions onto the given frame
robot_corners_pixel_coords = {}
for id, estimate in self.robot_marker_estimates.items():
try:
ind, _ = np.where(ids == id) # find index
ind = ind[0]
robot_corners_pixel_coords[id] = tuple(np.mean(corners[ind][0], axis=0))
except IndexError:
pass
if id in detected_marker_data.keys():
robot_corners_pixel_coords[id] = tuple(detected_marker_data[id]['center'])
for id, coord in robot_corners_pixel_coords.items():
x = self.robot_marker_estimates[id][0]
@ -339,5 +356,4 @@ class ArucoEstimator:
if __name__ == "__main__":
estimator = ArucoEstimator(use_realsense=False)
estimator.run_tracking()