restructured controller to work with mpc
This commit is contained in:
parent
17637f427b
commit
2f081faee8
|
@ -18,9 +18,9 @@ class ControllerBase:
|
|||
|
||||
control = self.compute_control(state)
|
||||
|
||||
self.apply_control(control)
|
||||
if self.controlling:
|
||||
self.apply_control(control)
|
||||
|
||||
time.sleep(self.control_rate)
|
||||
self.apply_control((0.0, 0.0)) # stop robot
|
||||
|
||||
def set_target_position(self, target_pos):
|
||||
|
@ -42,6 +42,7 @@ class ControllerBase:
|
|||
else:
|
||||
raise Exception("error: controller cannot apply control!\n"
|
||||
" there is no robot attached to the controller!")
|
||||
time.sleep(self.control_rate)
|
||||
|
||||
def attach_robot(self, robot):
|
||||
self.robot = robot
|
||||
|
|
|
@ -1,175 +1,62 @@
|
|||
import numpy as np
|
||||
import time
|
||||
|
||||
from controller import ControllerBase
|
||||
from casadi_opt import OpenLoopSolver
|
||||
|
||||
|
||||
class MPCController:
|
||||
def __init__(self, estimator):
|
||||
self.t = time.time()
|
||||
class MPCController(ControllerBase):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.t = None
|
||||
|
||||
self.estimator = estimator
|
||||
self.controlling = False
|
||||
|
||||
self.mstep = 2
|
||||
self.ols = OpenLoopSolver(N=20, T=1.0)
|
||||
self.ols.setup()
|
||||
self.dt = self.ols.T / self.ols.N
|
||||
self.control_rate = self.ols.T / self.ols.N
|
||||
|
||||
self.mstep = 2
|
||||
|
||||
# integrator
|
||||
self.omega_max = 5.0
|
||||
self.control_scaling = 0.4
|
||||
|
||||
def move_to_pos(self, target_pos, robot, near_target_counter=5):
|
||||
near_target = 0
|
||||
while near_target < near_target_counter:
|
||||
while not self.estimator.event_queue.empty():
|
||||
event = self.estimator.event_queue.get()
|
||||
print("event: ", event)
|
||||
if event[0] == 'click':
|
||||
pass
|
||||
elif event[0] == 'key':
|
||||
key = event[1]
|
||||
def set_target_position(self, target_pos):
|
||||
super(MPCController, self).set_target_position(target_pos)
|
||||
self.t = time.time()
|
||||
|
||||
if key == 84: # arrow up
|
||||
self.controlling = True
|
||||
self.t = time.time()
|
||||
elif key == 82: # arrow down
|
||||
self.controlling = False
|
||||
robot.send_cmd()
|
||||
elif key == 48: # 0
|
||||
target_pos = np.array([0.0, 0.0, 0.0])
|
||||
elif key == 43: # +
|
||||
self.control_scaling += 0.1
|
||||
self.control_scaling = min(self.control_scaling, 1.0)
|
||||
print("control scaling = ", self.control_scaling)
|
||||
elif key == 45: # -
|
||||
self.control_scaling -= 0.1
|
||||
self.control_scaling = max(self.control_scaling, 0.1)
|
||||
print("control scaling = ", self.control_scaling)
|
||||
elif key == 113:
|
||||
print("quit!")
|
||||
self.controlling = False
|
||||
robot.send_cmd()
|
||||
return
|
||||
elif key == 27: # escape
|
||||
print("quit!")
|
||||
self.controlling = False
|
||||
robot.send_cmd()
|
||||
return
|
||||
def compute_control(self, state):
|
||||
x_pred = state
|
||||
|
||||
x_pred = self.get_measurement(robot.id)
|
||||
error_pos = np.linalg.norm(x_pred[0:2] - self.target_pos[0:2])
|
||||
angles_unwrapped = np.unwrap([x_pred[2], self.target_pos[2]]) # unwrap angle to avoid jump in data
|
||||
error_ang = np.abs(angles_unwrapped[0] - angles_unwrapped[1])
|
||||
|
||||
if x_pred is not None:
|
||||
error_pos = np.linalg.norm(x_pred[0:2] - target_pos[0:2])
|
||||
angles_unwrapped = np.unwrap([x_pred[2], target_pos[2]]) # unwrap angle to avoid jump in data
|
||||
error_ang = np.abs(angles_unwrapped[0] - angles_unwrapped[1])
|
||||
# print("error pos = ", error_pos)
|
||||
# print("error_pos = {}, error_ang = {}".format(error_pos, error_ang))
|
||||
# if error_pos > 0.075 or error_ang > 0.35:
|
||||
if error_pos > 0.05:
|
||||
# solve mpc open loop problem
|
||||
res = self.ols.solve(x_pred, self.target_pos)
|
||||
|
||||
# if error_pos > 0.075 or error_ang > 0.35:
|
||||
if error_pos > 0.05 or error_ang > 0.1:
|
||||
# solve mpc open loop problem
|
||||
res = self.ols.solve(x_pred, target_pos)
|
||||
us1 = res[0] * self.control_scaling
|
||||
us2 = res[1] * self.control_scaling
|
||||
|
||||
# us1 = res[0]
|
||||
# us2 = res[1]
|
||||
us1 = res[0] * self.control_scaling
|
||||
us2 = res[1] * self.control_scaling
|
||||
# print("u = {}", (us1, us2))
|
||||
dt_mpc = time.time() - self.t
|
||||
if dt_mpc < self.control_rate: # wait until next control can be applied
|
||||
time.sleep(self.control_rate - dt_mpc)
|
||||
else:
|
||||
us1 = [0] * self.mstep
|
||||
us2 = [0] * self.mstep
|
||||
|
||||
# print("---------------- mpc solution took {} seconds".format(tmpc_end - tmpc_start))
|
||||
dt_mpc = time.time() - self.t
|
||||
if dt_mpc < self.dt: # wait until next control can be applied
|
||||
# print("sleeping for {} seconds...".format(self.dt - dt_mpc))
|
||||
time.sleep(self.dt - dt_mpc)
|
||||
else:
|
||||
us1 = [0] * self.mstep
|
||||
us2 = [0] * self.mstep
|
||||
near_target += 1
|
||||
return us1, us2
|
||||
|
||||
# send controls to the robot
|
||||
for i in range(0, self.mstep): # option to use multistep mpc if len(range) > 1
|
||||
u1 = us1[i]
|
||||
u2 = us2[i]
|
||||
robot.send_cmd(u1, u2)
|
||||
if i < self.mstep:
|
||||
time.sleep(self.dt)
|
||||
self.t = time.time() # save time the most recent control was applied
|
||||
else:
|
||||
print("robot not detected yet!")
|
||||
|
||||
def interactive_control(self, robots):
|
||||
controlled_robot_number = 0
|
||||
robot = robots[controlled_robot_number]
|
||||
|
||||
target_pos = np.array([0.0, 0.0, 0.0])
|
||||
|
||||
running = True
|
||||
while running:
|
||||
# handle events from opencv window
|
||||
while not self.estimator.event_queue.empty():
|
||||
event = self.estimator.event_queue.get()
|
||||
print("event: ", event)
|
||||
if event[0] == 'click':
|
||||
target_pos = event[1]
|
||||
elif event[0] == 'key':
|
||||
key = event[1]
|
||||
|
||||
if key == 32: # arrow up
|
||||
self.controlling = not self.controlling
|
||||
if not self.controlling:
|
||||
print("disable control")
|
||||
robot.send_cmd() # stop robot
|
||||
else:
|
||||
print("enable control")
|
||||
self.t = time.time()
|
||||
elif key == 48: # 0
|
||||
target_pos = np.array([0.0, 0.0, 0.0]) # TODO: use center of board for target pos
|
||||
elif key == 43: # +
|
||||
self.control_scaling += 0.1
|
||||
self.control_scaling = min(self.control_scaling, 1.0)
|
||||
print("control scaling = ", self.control_scaling)
|
||||
elif key == 45: # -
|
||||
self.control_scaling -= 0.1
|
||||
self.control_scaling = max(self.control_scaling, 0.1)
|
||||
print("control scaling = ", self.control_scaling)
|
||||
elif key == 9: # TAB
|
||||
# switch controlled robot
|
||||
robot.send_cmd() # stop current robot
|
||||
controlled_robot_number = (controlled_robot_number + 1) % len(robots)
|
||||
robot = robots[controlled_robot_number]
|
||||
print(f"controlled robot: {robot.id}")
|
||||
elif key == 113 or key == 27: # q or ESCAPE
|
||||
print("quit!")
|
||||
self.controlling = False
|
||||
robot.send_cmd()
|
||||
return
|
||||
|
||||
if self.controlling:
|
||||
# measure state
|
||||
x_pred = self.get_measurement(robot.id)
|
||||
|
||||
# print(np.linalg.norm(x_pred-target_pos))
|
||||
|
||||
# solve mpc open loop problem
|
||||
res = self.ols.solve(x_pred, target_pos)
|
||||
|
||||
us1 = res[0] * self.control_scaling
|
||||
us2 = res[1] * self.control_scaling
|
||||
|
||||
dt_mpc = time.time() - self.t
|
||||
if dt_mpc < self.dt: # wait until next control can be applied
|
||||
time.sleep(self.dt - dt_mpc)
|
||||
|
||||
# send controls to the robot
|
||||
for i in range(0, self.mstep): # option to use multistep mpc if len(range) > 1
|
||||
u1 = us1[i]
|
||||
u2 = us2[i]
|
||||
robot.send_cmd(u1, u2)
|
||||
if i < self.mstep:
|
||||
time.sleep(self.dt)
|
||||
self.t = time.time() # save time the most recent control was applied
|
||||
|
||||
def get_measurement(self, robot_id):
|
||||
return self.estimator.get_robot_state_estimate(robot_id)
|
||||
def apply_control(self, control):
|
||||
if self.robot is not None:
|
||||
for i in range(0, self.mstep): # option to use multistep mpc if len(range) > 1
|
||||
u1 = control[0][i]
|
||||
u2 = control[1][i]
|
||||
self.robot.send_cmd(u1, u2)
|
||||
if i < self.mstep:
|
||||
time.sleep(self.control_rate)
|
||||
self.t = time.time() # save time the most recent control was applied
|
||||
else:
|
||||
raise Exception("error: controller cannot apply control!\n"
|
||||
" there is no robot attached to the controller!")
|
|
@ -10,8 +10,6 @@ class PIDController(ControllerBase):
|
|||
super().__init__()
|
||||
self.t = None
|
||||
|
||||
self.controlling = False
|
||||
|
||||
self.P_angle = 0.4
|
||||
self.I_angle = 0.35
|
||||
self.D_angle = 0.1
|
||||
|
@ -46,7 +44,7 @@ class PIDController(ControllerBase):
|
|||
if self.t is None:
|
||||
dt = 0.1
|
||||
else:
|
||||
dt = time.time() - self.t
|
||||
dt = time.time() - self.t # time since last control was applied
|
||||
|
||||
if self.mode == 'angle':
|
||||
# compute angle such that robot faces to target point
|
||||
|
@ -108,9 +106,12 @@ class PIDController(ControllerBase):
|
|||
|
||||
self.e_pos_old = e_pos
|
||||
self.e_angle_old = e_angle
|
||||
|
||||
else:
|
||||
u1 = 0.0
|
||||
u2 = 0.0
|
||||
self.t = time.time() # save time when the most recent control was applied
|
||||
return u1, u2
|
||||
|
||||
def apply_control(self, control):
|
||||
super(PIDController, self).apply_control(control)
|
||||
self.t = time.time() # save time when the most recent control was applied
|
||||
time.sleep(self.control_rate)
|
||||
|
|
Loading…
Reference in New Issue
Block a user