about to make changes s.t. PID controller derives from ControllerBase class
This commit is contained in:
parent
6b9373cce5
commit
47f652fd62
|
@ -2,15 +2,13 @@ import numpy as np
|
||||||
import math
|
import math
|
||||||
import time
|
import time
|
||||||
|
|
||||||
|
|
||||||
class PIDController:
|
class PIDController:
|
||||||
def __init__(self, estimator):
|
def __init__(self, event_listener):
|
||||||
self.t = time.time()
|
self.t = time.time()
|
||||||
|
|
||||||
self.estimator = estimator
|
|
||||||
self.controlling = False
|
self.controlling = False
|
||||||
|
|
||||||
self.P_angle = 0.4 # PID parameters determined by Ziegler-Nichols. measured K_crit = 1.4, T_crit = 1.5
|
self.P_angle = 0.4
|
||||||
self.I_angle = 0.35
|
self.I_angle = 0.35
|
||||||
self.D_angle = 0.1
|
self.D_angle = 0.1
|
||||||
|
|
||||||
|
@ -20,84 +18,17 @@ class PIDController:
|
||||||
|
|
||||||
self.mode = None
|
self.mode = None
|
||||||
|
|
||||||
def move_to_pos(self, target_pos, robot, near_target_counter=5):
|
self.event_listener = event_listener
|
||||||
near_target = 0
|
|
||||||
while near_target < near_target_counter:
|
|
||||||
while not self.estimator.event_queue.empty():
|
|
||||||
event = self.estimator.event_queue.get()
|
|
||||||
print("event: ", event)
|
|
||||||
if event[0] == 'click':
|
|
||||||
pass
|
|
||||||
elif event[0] == 'key':
|
|
||||||
key = event[1]
|
|
||||||
|
|
||||||
if key == 84: # arrow up
|
def control_multiple_robots(self, robots):
|
||||||
self.controlling = True
|
robot_target_positions = {}
|
||||||
self.t = time.time()
|
for robot in robots:
|
||||||
elif key == 82: # arrow down
|
robot_target_positions[robot.id] = None
|
||||||
self.controlling = False
|
|
||||||
robot.send_cmd()
|
|
||||||
elif key == 48: # 0
|
|
||||||
target_pos = np.array([0.0, 0.0, 0.0])
|
|
||||||
elif key == 43: # +
|
|
||||||
self.control_scaling += 0.1
|
|
||||||
self.control_scaling = min(self.control_scaling, 1.0)
|
|
||||||
print("control scaling = ", self.control_scaling)
|
|
||||||
elif key == 45: # -
|
|
||||||
self.control_scaling -= 0.1
|
|
||||||
self.control_scaling = max(self.control_scaling, 0.1)
|
|
||||||
print("control scaling = ", self.control_scaling)
|
|
||||||
elif key == 113:
|
|
||||||
print("quit!")
|
|
||||||
self.controlling = False
|
|
||||||
robot.send_cmd()
|
|
||||||
return
|
|
||||||
elif key == 27: # escape
|
|
||||||
print("quit!")
|
|
||||||
self.controlling = False
|
|
||||||
robot.send_cmd()
|
|
||||||
return
|
|
||||||
|
|
||||||
x_pred = self.get_measurement(robot.id)
|
running = True
|
||||||
|
while running:
|
||||||
|
pass
|
||||||
|
|
||||||
if x_pred is not None:
|
|
||||||
error_pos = np.linalg.norm(x_pred[0:2] - target_pos[0:2])
|
|
||||||
angles_unwrapped = np.unwrap([x_pred[2], target_pos[2]]) # unwrap angle to avoid jump in data
|
|
||||||
error_ang = np.abs(angles_unwrapped[0] - angles_unwrapped[1])
|
|
||||||
# print("error pos = ", error_pos)
|
|
||||||
# print("error_pos = {}, error_ang = {}".format(error_pos, error_ang))
|
|
||||||
|
|
||||||
# if error_pos > 0.075 or error_ang > 0.35:
|
|
||||||
if error_pos > 0.05 or error_ang > 0.1:
|
|
||||||
# solve mpc open loop problem
|
|
||||||
res = self.ols.solve(x_pred, target_pos)
|
|
||||||
|
|
||||||
# us1 = res[0]
|
|
||||||
# us2 = res[1]
|
|
||||||
us1 = res[0] * self.control_scaling
|
|
||||||
us2 = res[1] * self.control_scaling
|
|
||||||
# print("u = {}", (us1, us2))
|
|
||||||
|
|
||||||
# print("---------------- mpc solution took {} seconds".format(tmpc_end - tmpc_start))
|
|
||||||
dt_mpc = time.time() - self.t
|
|
||||||
if dt_mpc < self.dt: # wait until next control can be applied
|
|
||||||
# print("sleeping for {} seconds...".format(self.dt - dt_mpc))
|
|
||||||
time.sleep(self.dt - dt_mpc)
|
|
||||||
else:
|
|
||||||
us1 = [0] * self.mstep
|
|
||||||
us2 = [0] * self.mstep
|
|
||||||
near_target += 1
|
|
||||||
|
|
||||||
# send controls to the robot
|
|
||||||
for i in range(0, self.mstep): # option to use multistep mpc if len(range) > 1
|
|
||||||
u1 = us1[i]
|
|
||||||
u2 = us2[i]
|
|
||||||
robot.send_cmd(u1, u2)
|
|
||||||
if i < self.mstep:
|
|
||||||
time.sleep(self.dt)
|
|
||||||
self.t = time.time() # save time the most recent control was applied
|
|
||||||
else:
|
|
||||||
print("robot not detected yet!")
|
|
||||||
|
|
||||||
def interactive_control(self, robots):
|
def interactive_control(self, robots):
|
||||||
controlled_robot_number = 0
|
controlled_robot_number = 0
|
||||||
|
@ -119,11 +50,12 @@ class PIDController:
|
||||||
running = True
|
running = True
|
||||||
while running:
|
while running:
|
||||||
# handle events from opencv window
|
# handle events from opencv window
|
||||||
while not self.estimator.event_queue.empty():
|
while not self.event_listener.event_queue.empty():
|
||||||
event = self.estimator.event_queue.get()
|
event = self.event_listener.event_queue.get()
|
||||||
print("event: ", event)
|
print("event: ", event)
|
||||||
if event[0] == 'click':
|
if event[0] == 'click':
|
||||||
target_pos = event[1]
|
target = event[1]
|
||||||
|
target_pos = np.array([target['x'], target['y'], target['angle']])
|
||||||
i_angle = 0
|
i_angle = 0
|
||||||
i_pos = 0
|
i_pos = 0
|
||||||
e_pos_old = 0
|
e_pos_old = 0
|
||||||
|
@ -181,11 +113,10 @@ class PIDController:
|
||||||
|
|
||||||
if self.controlling:
|
if self.controlling:
|
||||||
# measure state
|
# measure state
|
||||||
x_pred = self.get_measurement(robot.id)
|
t, x, y, angle = robot.get_measurement()
|
||||||
|
x_pred = np.array([x, y, angle])
|
||||||
dt = self.t - time.time()
|
dt = self.t - time.time()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#print(f"x_pred = {x_pred}\ntarget = {target_pos}\nerror = {np.linalg.norm(target_pos - x_pred)}\n")
|
#print(f"x_pred = {x_pred}\ntarget = {target_pos}\nerror = {np.linalg.norm(target_pos - x_pred)}\n")
|
||||||
if self.mode == 'angle':
|
if self.mode == 'angle':
|
||||||
# compute angle such that robot faces to target point
|
# compute angle such that robot faces to target point
|
||||||
|
@ -243,11 +174,9 @@ class PIDController:
|
||||||
d_pos = self.D_pos * (e_pos - e_pos_old) / dt
|
d_pos = self.D_pos * (e_pos - e_pos_old) / dt
|
||||||
|
|
||||||
if forward:
|
if forward:
|
||||||
print("forward")
|
|
||||||
u1 = p_angle + p_pos - i_angle - i_pos - d_angle - d_pos
|
u1 = p_angle + p_pos - i_angle - i_pos - d_angle - d_pos
|
||||||
u2 = - p_angle + p_pos + i_angle - i_pos + d_angle - d_pos
|
u2 = - p_angle + p_pos + i_angle - i_pos + d_angle - d_pos
|
||||||
else:
|
else:
|
||||||
print("backward")
|
|
||||||
u1 = p_angle - p_pos - i_angle + i_pos - d_angle + d_pos
|
u1 = p_angle - p_pos - i_angle + i_pos - d_angle + d_pos
|
||||||
u2 = - p_angle - p_pos + i_angle + i_pos + d_angle + d_pos
|
u2 = - p_angle - p_pos + i_angle + i_pos + d_angle + d_pos
|
||||||
|
|
||||||
|
@ -260,8 +189,4 @@ class PIDController:
|
||||||
#print(f"u = ({u1}, {u2})")
|
#print(f"u = ({u1}, {u2})")
|
||||||
robot.send_cmd(u1, u2)
|
robot.send_cmd(u1, u2)
|
||||||
self.t = time.time() # save time when the most recent control was applied
|
self.t = time.time() # save time when the most recent control was applied
|
||||||
time.sleep(0.1)
|
time.sleep(0.05)
|
||||||
|
|
||||||
|
|
||||||
def get_measurement(self, robot_id):
|
|
||||||
return self.estimator.get_robot_state_estimate(robot_id)
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user