working PID controller for driving forwards
This commit is contained in:
parent
993d4c0141
commit
91cde26908
292
remote_control/pid_controller.py
Normal file
292
remote_control/pid_controller.py
Normal file
|
@ -0,0 +1,292 @@
|
|||
import numpy as np
|
||||
import math
|
||||
import time
|
||||
|
||||
|
||||
class PIDController:
|
||||
def __init__(self, estimator):
|
||||
self.t = time.time()
|
||||
|
||||
self.estimator = estimator
|
||||
self.controlling = False
|
||||
|
||||
self.P_angle = 0.5 # PID parameters determined by Ziegler-Nichols. measured K_crit = 1.4, T_crit = 1.5
|
||||
self.I_angle = 0.4
|
||||
self.D_angle = 0.1
|
||||
|
||||
self.P_pos = 0.50
|
||||
self.I_pos = 0.3
|
||||
self.D_pos = 0.1
|
||||
|
||||
self.mode = None
|
||||
|
||||
def move_to_pos(self, target_pos, robot, near_target_counter=5):
|
||||
near_target = 0
|
||||
while near_target < near_target_counter:
|
||||
while not self.estimator.event_queue.empty():
|
||||
event = self.estimator.event_queue.get()
|
||||
print("event: ", event)
|
||||
if event[0] == 'click':
|
||||
pass
|
||||
elif event[0] == 'key':
|
||||
key = event[1]
|
||||
|
||||
if key == 84: # arrow up
|
||||
self.controlling = True
|
||||
self.t = time.time()
|
||||
elif key == 82: # arrow down
|
||||
self.controlling = False
|
||||
robot.send_cmd()
|
||||
elif key == 48: # 0
|
||||
target_pos = np.array([0.0, 0.0, 0.0])
|
||||
elif key == 43: # +
|
||||
self.control_scaling += 0.1
|
||||
self.control_scaling = min(self.control_scaling, 1.0)
|
||||
print("control scaling = ", self.control_scaling)
|
||||
elif key == 45: # -
|
||||
self.control_scaling -= 0.1
|
||||
self.control_scaling = max(self.control_scaling, 0.1)
|
||||
print("control scaling = ", self.control_scaling)
|
||||
elif key == 113:
|
||||
print("quit!")
|
||||
self.controlling = False
|
||||
robot.send_cmd()
|
||||
return
|
||||
elif key == 27: # escape
|
||||
print("quit!")
|
||||
self.controlling = False
|
||||
robot.send_cmd()
|
||||
return
|
||||
|
||||
x_pred = self.get_measurement(robot.id)
|
||||
|
||||
if x_pred is not None:
|
||||
error_pos = np.linalg.norm(x_pred[0:2] - target_pos[0:2])
|
||||
angles_unwrapped = np.unwrap([x_pred[2], target_pos[2]]) # unwrap angle to avoid jump in data
|
||||
error_ang = np.abs(angles_unwrapped[0] - angles_unwrapped[1])
|
||||
# print("error pos = ", error_pos)
|
||||
# print("error_pos = {}, error_ang = {}".format(error_pos, error_ang))
|
||||
|
||||
# if error_pos > 0.075 or error_ang > 0.35:
|
||||
if error_pos > 0.05 or error_ang > 0.1:
|
||||
# solve mpc open loop problem
|
||||
res = self.ols.solve(x_pred, target_pos)
|
||||
|
||||
# us1 = res[0]
|
||||
# us2 = res[1]
|
||||
us1 = res[0] * self.control_scaling
|
||||
us2 = res[1] * self.control_scaling
|
||||
# print("u = {}", (us1, us2))
|
||||
|
||||
# print("---------------- mpc solution took {} seconds".format(tmpc_end - tmpc_start))
|
||||
dt_mpc = time.time() - self.t
|
||||
if dt_mpc < self.dt: # wait until next control can be applied
|
||||
# print("sleeping for {} seconds...".format(self.dt - dt_mpc))
|
||||
time.sleep(self.dt - dt_mpc)
|
||||
else:
|
||||
us1 = [0] * self.mstep
|
||||
us2 = [0] * self.mstep
|
||||
near_target += 1
|
||||
|
||||
# send controls to the robot
|
||||
for i in range(0, self.mstep): # option to use multistep mpc if len(range) > 1
|
||||
u1 = us1[i]
|
||||
u2 = us2[i]
|
||||
robot.send_cmd(u1, u2)
|
||||
if i < self.mstep:
|
||||
time.sleep(self.dt)
|
||||
self.t = time.time() # save time the most recent control was applied
|
||||
else:
|
||||
print("robot not detected yet!")
|
||||
|
||||
def interactive_control(self, robots):
|
||||
controlled_robot_number = 0
|
||||
robot = robots[controlled_robot_number]
|
||||
|
||||
ts = []
|
||||
angles = []
|
||||
|
||||
target_pos = np.array([0.0, 0.0, 0.0])
|
||||
e_angle_old = 0.0
|
||||
e_pos_old = 0.0
|
||||
|
||||
i = 0.0
|
||||
i_angle = 0.0
|
||||
i_pos = 0.0
|
||||
|
||||
t0 = time.time()
|
||||
|
||||
running = True
|
||||
while running:
|
||||
# handle events from opencv window
|
||||
while not self.estimator.event_queue.empty():
|
||||
event = self.estimator.event_queue.get()
|
||||
print("event: ", event)
|
||||
if event[0] == 'click':
|
||||
target_pos = event[1]
|
||||
i_angle = 0
|
||||
i_pos = 0
|
||||
e_pos_old = 0
|
||||
e_angle_old = 0
|
||||
self.mode = 'combined'
|
||||
elif event[0] == 'key':
|
||||
key = event[1]
|
||||
|
||||
if key == 32: # arrow up
|
||||
self.controlling = not self.controlling
|
||||
if not self.controlling:
|
||||
print("disable control")
|
||||
robot.send_cmd() # stop robot
|
||||
self.mode = None # reset control mode
|
||||
else:
|
||||
print("enable control")
|
||||
i = 0
|
||||
self.t = time.time()
|
||||
elif key == 48: # 0
|
||||
target_pos = np.array([0.0, 0.0, 0.0]) # TODO: use center of board for target pos
|
||||
elif key == 97: # a
|
||||
self.mode = 'angle'
|
||||
e_angle_old = 0
|
||||
i = 0
|
||||
self.t = time.time()
|
||||
elif key == 99: # c
|
||||
self.mode = 'combined'
|
||||
e_angle_old = 0
|
||||
e_pos_old = 0
|
||||
i_angle = 0
|
||||
i_pos = 0
|
||||
self.t = time.time()
|
||||
elif key == 112: # p
|
||||
self.mode = 'position'
|
||||
e_pos_old = 0
|
||||
i = 0
|
||||
self.t = time.time()
|
||||
elif key == 43: # +
|
||||
self.P_pos += 0.1
|
||||
print("P = ", self.P_angle)
|
||||
elif key == 45: # -
|
||||
self.P_pos -= 0.1
|
||||
print("P = ", self.P_angle)
|
||||
elif key == 9: # TAB
|
||||
# switch controlled robot
|
||||
robot.send_cmd() # stop current robot
|
||||
controlled_robot_number = (controlled_robot_number + 1) % len(robots)
|
||||
robot = robots[controlled_robot_number]
|
||||
print(f"controlled robot: {robot.id}")
|
||||
elif key == 113 or key == 27: # q or ESCAPE
|
||||
print("quit!")
|
||||
self.controlling = False
|
||||
robot.send_cmd()
|
||||
return
|
||||
|
||||
if self.controlling:
|
||||
# measure state
|
||||
x_pred = self.get_measurement(robot.id)
|
||||
dt = self.t - time.time()
|
||||
|
||||
|
||||
|
||||
#print(f"x_pred = {x_pred}\ntarget = {target_pos}\nerror = {np.linalg.norm(target_pos - x_pred)}\n")
|
||||
if self.mode == 'angle':
|
||||
# compute angle such that robot faces to target point
|
||||
target_angle = target_pos[2]
|
||||
|
||||
ts.append(time.time() - t0)
|
||||
angles.append(x_pred[2])
|
||||
|
||||
angles_unwrapped = np.unwrap([x_pred[2], target_angle]) # unwrap angle to avoid jump in data
|
||||
|
||||
e_angle = angles_unwrapped[0] - angles_unwrapped[1] # angle difference
|
||||
p = self.P_angle * e_angle
|
||||
# i += self.I * dt * e # right Riemann sum
|
||||
i += self.I_angle * dt * (e_angle + e_angle_old)/2.0 # trapezoidal rule
|
||||
d = self.D_angle * (e_angle - e_angle_old)/dt
|
||||
|
||||
u1 = p - i - d
|
||||
u2 = - u1
|
||||
|
||||
e_angle_old = e_angle
|
||||
elif self.mode == 'position':
|
||||
# we assume that we face straight to the target position
|
||||
v = target_pos[0:2] - x_pred[0:2]
|
||||
# check if robot faces in same direction as pos-target-vector
|
||||
target_angle = math.atan2(v[1], v[0])
|
||||
current_angle = x_pred[2]
|
||||
|
||||
angles_unwrapped = np.unwrap([current_angle, target_angle]) # unwrap angle to avoid jump in data
|
||||
alpha = angles_unwrapped[0]
|
||||
beta = angles_unwrapped[1]
|
||||
|
||||
epsilon = 0.3
|
||||
|
||||
|
||||
if not (abs(alpha - beta) < epsilon or abs(alpha - beta + np.pi) < epsilon or abs(alpha - beta - np.pi) < epsilon):
|
||||
print("switch to angle mode")
|
||||
u1 = u2 = 0.0
|
||||
robot.send_cmd(u1, u2)
|
||||
self.mode = 'angle'
|
||||
elif abs(alpha - beta) < epsilon:
|
||||
# forward
|
||||
e = np.linalg.norm(x_pred[0:2] - target_pos[0:2]) # compute euclidean distance to target
|
||||
p = self.P * e
|
||||
# i += self.I * dt * e # right Riemann sum
|
||||
i += self.I * dt * (e + e_old) / 2.0 # trapezoidal rule
|
||||
d = self.D * (e - e_old) / dt
|
||||
|
||||
u1 = p - i + d
|
||||
u2 = u1
|
||||
else:
|
||||
# backward
|
||||
e = np.linalg.norm(x_pred[0:2] - target_pos[0:2]) # compute euclidean distance to target
|
||||
p = self.P * e
|
||||
# i += self.I * dt * e # right Riemann sum
|
||||
i += self.I * dt * (e + e_old) / 2.0 # trapezoidal rule
|
||||
d = self.D * (e - e_old) / dt
|
||||
|
||||
u1 = -(p - i + d)
|
||||
u2 = u1
|
||||
|
||||
e_old = e
|
||||
#else:
|
||||
# print("switching to angle mode")
|
||||
# u1 = u2 = 0.0
|
||||
# self.mode = 'angle'
|
||||
|
||||
elif self.mode == 'combined':
|
||||
# compute angle such that robot faces to target point
|
||||
v = target_pos[0:2] - x_pred[0:2]
|
||||
target_angle = math.atan2(v[1], v[0])
|
||||
|
||||
angles_unwrapped = np.unwrap([x_pred[2], target_angle]) # unwrap angle to avoid jump in data
|
||||
|
||||
e_angle = angles_unwrapped[0] - angles_unwrapped[1] # angle difference
|
||||
e_pos = np.linalg.norm(v)
|
||||
|
||||
p_angle = self.P_angle * e_angle
|
||||
i_angle += self.I_angle * dt * (e_angle + e_angle_old) / 2.0 # trapezoidal rule
|
||||
d_angle = self.D_angle * (e_angle - e_angle_old) / dt
|
||||
|
||||
p_pos = self.P_pos * e_pos
|
||||
i_pos += self.I_pos * dt * (e_pos + e_pos_old) / 2.0 # trapezoidal rule
|
||||
d_pos = self.D_pos * (e_pos - e_pos_old) / dt
|
||||
|
||||
u1 = p_angle + p_pos - i_angle - i_pos
|
||||
u2 = - p_angle + p_pos + i_angle - i_pos
|
||||
|
||||
e_pos_old = e_pos
|
||||
e_angle_old = e_angle
|
||||
|
||||
if e_pos < 0.05:
|
||||
self.mode = 'angle'
|
||||
|
||||
else:
|
||||
u1 = 0.0
|
||||
u2 = 0.0
|
||||
#print(f"u = ({u1}, {u2})")
|
||||
robot.send_cmd(u1, u2)
|
||||
self.t = time.time() # save time when the most recent control was applied
|
||||
time.sleep(0.1)
|
||||
|
||||
|
||||
def get_measurement(self, robot_id):
|
||||
return self.estimator.get_robot_state_estimate(robot_id)
|
Loading…
Reference in New Issue
Block a user