cleaned up code, removed old controllers

This commit is contained in:
Simon Pirkelmann 2019-06-27 14:43:42 +02:00
parent ac0ad6c45a
commit 9dfc06169f

View File

@ -75,7 +75,7 @@ class RemoteController:
for r in self.robots:
self.robot_ids[r.id] = r
obst = [Obstacle(6, 0.2), Obstacle(5, 0.2), Obstacle(8, 0.2)]
obst = [Obstacle(6, 0.175), Obstacle(5, 0.175), Obstacle(8, 0.175)]
self.obstacles = {}
for r in obst:
@ -111,21 +111,13 @@ class RemoteController:
self.mutex = threading.Lock()
# ROS subscriber for detected markers
marker_sub = rospy.Subscriber("/marker_id_pos_angle", id_pos_angle, self.measurement_callback)
# pid parameters
self.k = 0
self.ii = 0.1
self.pp = 0.4
self.inc = 0.0
self.alphas = []
self.speed = 1.0
self.controlling = False
# currently active control
self.u1 = 0.0
self.u2 = 0.0
@ -152,9 +144,15 @@ class RemoteController:
self.ols = OpenLoopSolver()
self.ols.setup()
self.dt = self.ols.T / self.ols.N
self.target = (0.0, 0.0, 0.0)
# integrator
self.r = scipy.integrate.ode(f_ode)
self.omega_max = 5.0
def ani(self):
self.ani = anim.FuncAnimation(self.fig, init_func=self.ani_init, func=self.ani_update, interval=10, blit=True)
plt.ion()
@ -213,7 +211,6 @@ class RemoteController:
else:
self.line_ol.set_data([],[])
i = 0
obst_keys = self.obstacles.keys()
for s in self.circles:
@ -230,16 +227,13 @@ class RemoteController:
return self.line, self.line_sim, self.dirm, self.dirs, self.line_ol, self.circles[0], self.circles[1],self.circles[2],
def measurement_callback(self, data):
#print("data = {}".format(data))
# detect robots
if data.id in self.robot_ids:
r = self.robot_ids[data.id]
r.pos = (data.x, data.y) # only x and y component are important for us
r.euler = data.angle
#print("r.pos = {}".format(r.pos))
#print("r.angle = {}".format(r.euler))
# save measured position and angle for plotting
measurement = np.array([r.pos[0], r.pos[1], r.euler])
if self.tms_0 is None:
@ -260,150 +254,16 @@ class RemoteController:
finally:
self.mutex.release()
# detect obstacles
if data.id in self.obstacles.keys():
obst = (data.x, data.y)
self.obstacles[data.id].pos = obst
def controller(self):
tgrid = None
us1 = None
us2 = None
u1 = -0.0
u2 = 0.0
r = scipy.integrate.ode(f_ode)
omega_max = 5.0
init_pos = None
init_time = None
final_pos = None
final_time = None
forward = True
print("starting control")
while True:
keyboard_control = False
keyboard_control_speed_test = False
pid = False
open_loop_solve = True
if keyboard_control: # keyboard controller
events = pygame.event.get()
speed = 1.0
for event in events:
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_LEFT:
self.u1 = -speed
self.u2 = speed
#print("turn left: ({},{})".format(u1, u2))
elif event.key == pygame.K_RIGHT:
self.u1 = speed
self.u2 = -speed
#print("turn right: ({},{})".format(u1, u2))
elif event.key == pygame.K_UP:
self.u1 = speed
self.u2 = speed
#print("forward: ({},{})".format(self.u1, self.u2))
elif event.key == pygame.K_DOWN:
self.u1 = -speed
self.u2 = -speed
#print("forward: ({},{})".format(u1, u2))
self.rc_socket.send('({},{},{})\n'.format(0.1, self.u1, self.u2))
elif event.type == pygame.KEYUP:
self.u1 = 0
self.u2 = 0
#print("key released, resetting: ({},{})".format(u1, u2))
self.rc_socket.send('({}, {},{})\n'.format(0.1, self.u1, self.u2))
tnew = time.time()
dt = tnew - self.t
r = scipy.integrate.ode(f_ode)
r.set_f_params(np.array([self.u1 * omega_max, self.u2 * omega_max]))
#print(self.x0)
if self.x0 is None:
if self.xm_0 is not None:
self.x0 = self.xm_0
self.xs = self.x0
else:
print("error: no measurement available to initialize simulation")
x = self.x0
r.set_initial_value(x, self.t)
xnew = r.integrate(r.t + dt)
self.t = tnew
self.x0 = xnew
self.mutex.acquire()
try:
self.ts = np.append(self.ts, tnew)
self.xs = np.vstack((self.xs, xnew))
finally:
self.mutex.release()
elif keyboard_control_speed_test:
events = pygame.event.get()
for event in events:
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_1:
self.controlling = True
forward = True
print("starting test")
self.mutex.acquire()
try:
init_pos = copy.deepcopy(self.xms[-1])
init_time = copy.deepcopy(self.tms[-1])
finally:
self.mutex.release()
if event.key == pygame.K_2:
self.controlling = True
forward = False
print("starting test")
self.mutex.acquire()
try:
init_pos = copy.deepcopy(self.xms[-1])
init_time = copy.deepcopy(self.tms[-1])
finally:
self.mutex.release()
elif event.key == pygame.K_3:
self.controlling = False
print("stopping test")
self.rc_socket.send('(0.1, 0.0,0.0)\n')
self.mutex.acquire()
try:
final_pos = copy.deepcopy(self.xms[-1])
final_time = copy.deepcopy(self.tms[-1])
finally:
self.mutex.release()
print("init_pos = {}".format(init_pos))
print("final_pos = {}".format(final_pos))
print("distance = {}".format(np.linalg.norm(init_pos[0:2]-final_pos[0:2])))
print("dt = {}".format(final_time - init_time))
d = np.linalg.norm(init_pos[0:2]-final_pos[0:2])
t = final_time - init_time
r = 0.03
angular_velocity = d/r/t
print("average angular velocity = {}".format(angular_velocity))
if self.controlling:
if forward:
self.rc_socket.send('(0.1, 1.0,1.0)\n')
else:
self.rc_socket.send('(0.1, -1.0,-1.0)\n')
time.sleep(0.1)
#print("speed = {}".format(self.speed))
elif open_loop_solve:
# open loop controller
events = pygame.event.get()
for event in events:
if event.type == pygame.KEYDOWN:
@ -424,7 +284,42 @@ class RemoteController:
self.target = (-0.5,-0.5, np.pi/2.0)
elif event.key == pygame.K_4:
self.target = (-0.5,0.5, 0.0)
if self.controlling:
x_pred = self.get_measurement_prediction()
tmpc_start = time.time()
# solve mpc open loop problem
res = self.ols.solve(x_pred, self.target, self.obstacles)
us1 = res[0]
us2 = res[1]
# save open loop trajectories for plotting
self.mutex.acquire()
try:
self.ol_x = res[2]
self.ol_y = res[3]
finally:
self.mutex.release()
tmpc_end = time.time()
print("---------------- mpc solution took {} seconds".format(tmpc_end - tmpc_start))
dt_mpc = time.time() - self.t
if dt_mpc < self.dt: # wait until next control can be applied
print("sleeping for {} seconds...".format(self.dt - dt_mpc))
time.sleep(self.dt - dt_mpc)
# send controls to the robot
for i in range(0, 1): # option to use multistep mpc if len(range) > 1
u1 = us1[i]
u2 = us2[i]
if self.rc_socket:
self.rc_socket.send('({},{})\n'.format(u1, u2))
self.t = time.time() # save time the most recent control was applied
def get_measurement_prediction(self):
# get measurement
self.mutex.acquire()
try:
@ -433,84 +328,15 @@ class RemoteController:
finally:
self.mutex.release()
#print("current measurement (t, x) = ({}, {})".format(last_time, last_measurement))
#print("current control (u1, u2) = ({}, {})".format(u1, u2))
# prediction of state at time the mpc will terminate
r.set_f_params(np.array([u1 * omega_max, u2 * omega_max]))
self.r.set_f_params(np.array([self.u1 * self.omega_max, self.u2 * self.omega_max]))
r.set_initial_value(last_measurement, last_time)
dt = self.ols.T/self.ols.N
#print("integrating for {} seconds".format((dt)))
x_pred = r.integrate(r.t + (dt))
self.r.set_initial_value(last_measurement, last_time)
#print("predicted initial state x_pred = ({})".format(x_pred))
x_pred = self.r.integrate(self.r.t + self.dt)
tmpc_start = time.time()
return x_pred
res = self.ols.solve(x_pred, self.target, self.obstacles)
#tgrid = res[0]
us1 = res[0]
us2 = res[1]
self.mutex.acquire()
try:
self.ol_x = res[2]
self.ol_y = res[3]
finally:
self.mutex.release()
# tt = 0
# x = last_measurement
# t_ol = np.array([tt])
# x_ol = np.array([x])
# # compute open loop prediction
# for i in range(len(us1)):
# r = scipy.integrate.ode(f_ode)
# r.set_f_params(np.array([us1[i] * 13.32, us2[i] * 13.32]))
# r.set_initial_value(x, tt)
#
# tt = tt + 0.1
# x = r.integrate(tt)
#
# t_ol = np.vstack((t_ol, tt))
# x_ol = np.vstack((x_ol, x))
#plt.figure(4)
#plt.plot(x_ol[:,0], x_ol[:,1])
#if event.key == pygame.K_DOWN:
# if tgrid is not None:
tmpc_end = time.time()
print("---------------- mpc solution took {} seconds".format(tmpc_end - tmpc_start))
dt_mpc = time.time() - self.t
if dt_mpc < dt:
print("sleeping for {} seconds...".format(dt - dt_mpc))
time.sleep(dt - dt_mpc)
self.mutex.acquire()
try:
second_measurement = copy.deepcopy(self.xms[-1])
second_time = copy.deepcopy(self.tms[-1])
finally:
self.mutex.release()
#print("(last_time, second_time, dt) = ({}, {}, {})".format(last_time, second_time, second_time - last_time))
#print("mismatch between predicted state and measured state: {}\n\n".format(second_measurement - last_measurement))
for i in range(0, 1):
u1 = us1[i]
u2 = us2[i]
#self.rc_socket.send('({},{},{})\n'.format(dt,u1, u2))
if self.rc_socket:
self.rc_socket.send('({},{})\n'.format(u1, u2))
self.t = time.time()
#time.sleep(0.2)
#
pass
def main(args):
rospy.init_node('controller_node', anonymous=True)
@ -523,6 +349,7 @@ def main(args):
screenwidth = 640
pygame.display.set_mode([screenwidth, screenheight])
#threading.Thread(target=rc.input_handling).start()
threading.Thread(target=rc.controller).start()
rc.ani()