implemented obstacle avoidance
This commit is contained in:
parent
b755173c6b
commit
b54c2d565c
|
@ -4,13 +4,15 @@ import time
|
|||
# look at: https://github.com/casadi/casadi/blob/master/docs/examples/python/vdp_indirect_multiple_shooting.py
|
||||
|
||||
class OpenLoopSolver:
|
||||
def __init__(self, N=10, T=2.0):
|
||||
def __init__(self, N=20, T=4.0):
|
||||
self.T = T
|
||||
self.N = N
|
||||
|
||||
self.opti_x0 = None
|
||||
self.opti_lam_g0 = None
|
||||
|
||||
self.use_warmstart = True
|
||||
|
||||
def setup(self):
|
||||
x = SX.sym('x')
|
||||
y = SX.sym('y')
|
||||
|
@ -135,6 +137,8 @@ class OpenLoopSolver:
|
|||
#plt.show()
|
||||
#return
|
||||
|
||||
|
||||
def solve(self, x0, target, obstacles):
|
||||
# alternative solution using multiple shooting (way faster!)
|
||||
self.opti = Opti() # Optimization problem
|
||||
|
||||
|
@ -143,6 +147,8 @@ class OpenLoopSolver:
|
|||
self.Q = self.opti.variable(1,self.N+1) # state trajectory
|
||||
|
||||
self.U = self.opti.variable(2,self.N) # control trajectory (throttle)
|
||||
|
||||
self.slack = self.opti.variable(1,1)
|
||||
#T = self.opti.variable() # final time
|
||||
|
||||
# ---- objective ---------
|
||||
|
@ -158,7 +164,7 @@ class OpenLoopSolver:
|
|||
#self.opti.set_initial(T, 1)
|
||||
|
||||
|
||||
def solve(self, x0, target):
|
||||
|
||||
|
||||
tstart = time.time()
|
||||
x = SX.sym('x')
|
||||
|
@ -205,12 +211,12 @@ class OpenLoopSolver:
|
|||
q_next = self.Q[:, k] + dt / 6 * (k1_q + 2 * k2_q + 2 * k3_q + k4_q)
|
||||
self.opti.subject_to(self.X[:, k + 1] == x_next) # close the gaps
|
||||
self.opti.subject_to(self.Q[:, k + 1] == q_next) # close the gaps
|
||||
self.opti.minimize(self.Q[:, self.N])
|
||||
self.opti.minimize(self.Q[:, self.N] + 1.0e5 * self.slack**2)
|
||||
|
||||
# ---- path constraints -----------
|
||||
# limit = lambda pos: 1-sin(2*pi*pos)/2
|
||||
# self.opti.subject_to(speed<=limit(pos)) # track speed limit
|
||||
maxcontrol = 0.950
|
||||
maxcontrol = 0.95
|
||||
self.opti.subject_to(self.opti.bounded(-maxcontrol, self.U, maxcontrol)) # control is limited
|
||||
|
||||
# ---- boundary conditions --------
|
||||
|
@ -227,10 +233,11 @@ class OpenLoopSolver:
|
|||
# self.opti.subject_to(X[2,:]>=-2) # Time must be positive
|
||||
|
||||
# avoid obstacle
|
||||
# r = 0.25
|
||||
# p = (0.5, 0.5)
|
||||
# for k in range(self.N):
|
||||
# self.opti.subject_to((X[0,k]-p[0])**2 + (X[1,k]-p[1])**2 > r**2)
|
||||
for o in obstacles:
|
||||
p = obstacles[o].pos
|
||||
r = obstacles[o].radius
|
||||
for k in range(1,self.N):
|
||||
self.opti.subject_to((self.X[0,k]-p[0])**2 + (self.X[1,k]-p[1])**2 + self.slack > r**2)
|
||||
# pass
|
||||
posx = self.X[0, :]
|
||||
posy = self.X[1, :]
|
||||
|
@ -241,12 +248,15 @@ class OpenLoopSolver:
|
|||
self.opti.subject_to(angle[0] == x0[2]) # finish line at position 1
|
||||
tend = time.time()
|
||||
|
||||
print("setting up problem took {} seconds".format(tend - tstart))
|
||||
print("setting up problem took {} seconds".format(tend - tstart))
|
||||
|
||||
if self.opti_x0 is not None:
|
||||
tstart = time.time()
|
||||
if self.use_warmstart and self.opti_x0 is not None:
|
||||
self.opti.set_initial(self.opti.lam_g, self.opti_lam_g0)
|
||||
self.opti.set_initial(self.opti.x, self.opti_x0)
|
||||
sol = self.opti.solve() # actual solve
|
||||
tend = time.time()
|
||||
print("solving the problem took {} seconds".format(tend - tstart))
|
||||
|
||||
self.opti_x0 = sol.value(self.opti.x)
|
||||
self.opti_lam_g0 = sol.value(self.opti.lam_g)
|
||||
|
@ -256,7 +266,7 @@ class OpenLoopSolver:
|
|||
u_opt_1 = sol.value(self.U[0,:])
|
||||
u_opt_2 = sol.value(self.U[1,:])
|
||||
|
||||
return (u_opt_1, u_opt_2)
|
||||
return (u_opt_1, u_opt_2, sol.value(posx), sol.value(posy))
|
||||
|
||||
#lam_g0 = sol.value(self.opti.lam_g)
|
||||
|
||||
|
|
|
@ -18,6 +18,7 @@ from copy import deepcopy
|
|||
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.animation as anim
|
||||
import matplotlib.patches as patch
|
||||
|
||||
import time
|
||||
|
||||
|
@ -37,6 +38,12 @@ class Robot:
|
|||
|
||||
self.ip = ip
|
||||
|
||||
class Obstacle:
|
||||
def __init__(self, id, radius):
|
||||
self.id = id
|
||||
self.pos = None
|
||||
self.radius = radius
|
||||
|
||||
def f_ode(t, x, u):
|
||||
# dynamical model of the two-wheeled robot
|
||||
# TODO: find exact values for these parameters
|
||||
|
@ -62,19 +69,28 @@ def f_ode(t, x, u):
|
|||
class RemoteController:
|
||||
def __init__(self):
|
||||
|
||||
self.robots = [Robot(3)]
|
||||
self.robots = [Robot(3, '192.168.1.103')]
|
||||
|
||||
self.robot_ids = {}
|
||||
for r in self.robots:
|
||||
self.robot_ids[r.id] = r
|
||||
|
||||
obst = [Obstacle(6, 0.2), Obstacle(5, 0.2), Obstacle(8, 0.2)]
|
||||
|
||||
self.obstacles = {}
|
||||
for r in obst:
|
||||
self.obstacles[r.id] = r
|
||||
|
||||
# connect to robot
|
||||
self.rc_socket = socket.socket()
|
||||
#self.rc_socket = None
|
||||
try:
|
||||
pass
|
||||
self.rc_socket.connect(('192.168.1.103', 1234)) # connect to robot
|
||||
for r in self.robots:
|
||||
self.rc_socket.connect((r.ip, 1234)) # connect to robot
|
||||
except socket.error:
|
||||
print("could not connect to socket")
|
||||
self.rc_socket = None
|
||||
|
||||
|
||||
self.t = time.time()
|
||||
|
||||
|
@ -89,6 +105,10 @@ class RemoteController:
|
|||
self.tms = None
|
||||
self.xms = None
|
||||
|
||||
# variable for mpc open loop
|
||||
self.ol_x = None
|
||||
self.ol_y = None
|
||||
|
||||
self.mutex = threading.Lock()
|
||||
|
||||
marker_sub = rospy.Subscriber("/marker_id_pos_angle", id_pos_angle, self.measurement_callback)
|
||||
|
@ -113,10 +133,19 @@ class RemoteController:
|
|||
self.fig = plt.figure()
|
||||
self.ax = self.fig.add_subplot(1,1,1)
|
||||
self.xdata, self.ydata = [], []
|
||||
self.line, = self.ax.plot([],[])
|
||||
self.line, = self.ax.plot([],[], color='grey', linestyle=':')
|
||||
self.line_sim, = self.ax.plot([], [])
|
||||
self.line_ol, = self.ax.plot([],[], color='green', linestyle='--')
|
||||
self.dirm, = self.ax.plot([], [])
|
||||
self.dirs, = self.ax.plot([], [])
|
||||
|
||||
self.circles = []
|
||||
for o in self.obstacles:
|
||||
self.circles.append(patch.Circle((0.0, 0.0), radius=0.1, fill=False, color='red', linestyle='--'))
|
||||
|
||||
for s in self.circles:
|
||||
self.ax.add_artist(s)
|
||||
|
||||
plt.xlabel('x-position')
|
||||
plt.ylabel('y-position')
|
||||
plt.grid()
|
||||
|
@ -136,7 +165,7 @@ class RemoteController:
|
|||
self.ax.set_ylim(-2, 2)
|
||||
self.ax.set_aspect('equal', adjustable='box')
|
||||
|
||||
return self.line, self.line_sim, self.dirm, self.dirs,
|
||||
return self.line, self.line_sim, self.dirm, self.dirs, self.line_ol, self.circles[0], self.circles[1],self.circles[2],
|
||||
|
||||
def ani_update(self, frame):
|
||||
#print("plotting")
|
||||
|
@ -155,8 +184,8 @@ class RemoteController:
|
|||
a = xm_local[-1, 0]
|
||||
b = xm_local[-1, 1]
|
||||
|
||||
a2 = a + np.cos(xm_local[-1, 2]) * 1.0
|
||||
b2 = b + np.sin(xm_local[-1, 2]) * 1.0
|
||||
a2 = a + np.cos(xm_local[-1, 2]) * 0.2
|
||||
b2 = b + np.sin(xm_local[-1, 2]) * 0.2
|
||||
|
||||
self.dirm.set_data(np.array([a, a2]), np.array([b, b2]))
|
||||
|
||||
|
@ -171,14 +200,34 @@ class RemoteController:
|
|||
a = xs_local[-1, 0]
|
||||
b = xs_local[-1, 1]
|
||||
|
||||
a2 = a + np.cos(xs_local[-1, 2]) * 1.0
|
||||
b2 = b + np.sin(xs_local[-1, 2]) * 1.0
|
||||
a2 = a + np.cos(xs_local[-1, 2]) * 0.2
|
||||
b2 = b + np.sin(xs_local[-1, 2]) * 0.2
|
||||
|
||||
self.dirs.set_data(np.array([a, a2]), np.array([b, b2]))
|
||||
|
||||
ol_x_local = deepcopy(self.ol_x)
|
||||
ol_y_local = deepcopy(self.ol_y)
|
||||
|
||||
if ol_x_local is not None:
|
||||
self.line_ol.set_data(ol_x_local, ol_y_local)
|
||||
else:
|
||||
self.line_ol.set_data([],[])
|
||||
|
||||
|
||||
i = 0
|
||||
obst_keys = self.obstacles.keys()
|
||||
for s in self.circles:
|
||||
o = self.obstacles[obst_keys[i]]
|
||||
i = i + 1
|
||||
|
||||
if o.pos is not None:
|
||||
s.center = o.pos
|
||||
s.radius = o.radius
|
||||
|
||||
finally:
|
||||
self.mutex.release()
|
||||
|
||||
return self.line, self.line_sim, self.dirm, self.dirs,
|
||||
return self.line, self.line_sim, self.dirm, self.dirs, self.line_ol, self.circles[0], self.circles[1],self.circles[2],
|
||||
|
||||
def measurement_callback(self, data):
|
||||
#print("data = {}".format(data))
|
||||
|
@ -211,6 +260,10 @@ class RemoteController:
|
|||
finally:
|
||||
self.mutex.release()
|
||||
|
||||
if data.id in self.obstacles.keys():
|
||||
obst = (data.x, data.y)
|
||||
self.obstacles[data.id].pos = obst
|
||||
|
||||
def controller(self):
|
||||
tgrid = None
|
||||
us1 = None
|
||||
|
@ -348,54 +401,6 @@ class RemoteController:
|
|||
#print("speed = {}".format(self.speed))
|
||||
|
||||
|
||||
elif pid:
|
||||
# pid controller
|
||||
|
||||
events = pygame.event.get()
|
||||
for event in events:
|
||||
if event.type == pygame.KEYDOWN:
|
||||
if event.key == pygame.K_LEFT:
|
||||
self.ii = self.ii / np.sqrt(np.sqrt(np.sqrt(10.0)))
|
||||
print("ii = {}".format(self.pp))
|
||||
elif event.key == pygame.K_RIGHT:
|
||||
self.ii = self.ii * np.sqrt(np.sqrt(np.sqrt(10.0)))
|
||||
print("ii = {}".format(self.pp))
|
||||
elif event.key == pygame.K_UP:
|
||||
self.controlling = True
|
||||
elif event.key == pygame.K_DOWN:
|
||||
self.controlling = False
|
||||
self.rc_socket.send('({},{})\n'.format(0, 0))
|
||||
|
||||
dt = 0.05
|
||||
|
||||
if self.controlling:
|
||||
# test: turn robot such that angle is zero
|
||||
for r in self.robots:
|
||||
if r.euler is not None:
|
||||
self.k = self.k + 1
|
||||
|
||||
alpha = r.euler
|
||||
self.alphas.append(alpha)
|
||||
|
||||
# compute error
|
||||
e = alpha - 0
|
||||
|
||||
# compute integral of error (approximately)
|
||||
self.inc += e * dt
|
||||
|
||||
# PID
|
||||
p = self.pp * e
|
||||
i = self.ii * self.inc
|
||||
d = 0.0
|
||||
|
||||
# compute controls for robot from PID
|
||||
u1 = p + i + d
|
||||
u2 = - p - i - d
|
||||
print("alpha = {}, u = ({}, {})".format(alpha, u1, u2))
|
||||
self.rc_socket.send('({},{})\n'.format(u1, u2))
|
||||
|
||||
time.sleep(dt)
|
||||
|
||||
elif open_loop_solve:
|
||||
# open loop controller
|
||||
|
||||
|
@ -407,7 +412,8 @@ class RemoteController:
|
|||
self.t = time.time()
|
||||
elif event.key == pygame.K_DOWN:
|
||||
self.controlling = False
|
||||
self.rc_socket.send('(0.1, 0.0,0.0)\n')
|
||||
if self.rc_socket:
|
||||
self.rc_socket.send('(0.0,0.0)\n')
|
||||
elif event.key == pygame.K_0:
|
||||
self.target = (0.0, 0.0, 0.0)
|
||||
elif event.key == pygame.K_1:
|
||||
|
@ -419,7 +425,6 @@ class RemoteController:
|
|||
elif event.key == pygame.K_4:
|
||||
self.target = (-0.5,0.5, 0.0)
|
||||
if self.controlling:
|
||||
tmpc_start = time.time()
|
||||
# get measurement
|
||||
self.mutex.acquire()
|
||||
try:
|
||||
|
@ -428,24 +433,33 @@ class RemoteController:
|
|||
finally:
|
||||
self.mutex.release()
|
||||
|
||||
print("current measurement (t, x) = ({}, {})".format(last_time, last_measurement))
|
||||
print("current control (u1, u2) = ({}, {})".format(u1, u2))
|
||||
#print("current measurement (t, x) = ({}, {})".format(last_time, last_measurement))
|
||||
#print("current control (u1, u2) = ({}, {})".format(u1, u2))
|
||||
|
||||
# prediction of state at time the mpc will terminate
|
||||
r.set_f_params(np.array([u1 * omega_max, u2 * omega_max]))
|
||||
|
||||
r.set_initial_value(last_measurement, last_time)
|
||||
dt = self.ols.T/self.ols.N
|
||||
print("integrating for {} seconds".format((dt)))
|
||||
#print("integrating for {} seconds".format((dt)))
|
||||
x_pred = r.integrate(r.t + (dt))
|
||||
|
||||
print("predicted initial state x_pred = ({})".format(x_pred))
|
||||
#print("predicted initial state x_pred = ({})".format(x_pred))
|
||||
|
||||
res = self.ols.solve(x_pred, self.target)
|
||||
tmpc_start = time.time()
|
||||
|
||||
res = self.ols.solve(x_pred, self.target, self.obstacles)
|
||||
#tgrid = res[0]
|
||||
us1 = res[0]
|
||||
us2 = res[1]
|
||||
|
||||
self.mutex.acquire()
|
||||
try:
|
||||
self.ol_x = res[2]
|
||||
self.ol_y = res[3]
|
||||
finally:
|
||||
self.mutex.release()
|
||||
|
||||
# tt = 0
|
||||
# x = last_measurement
|
||||
# t_ol = np.array([tt])
|
||||
|
@ -482,16 +496,17 @@ class RemoteController:
|
|||
finally:
|
||||
self.mutex.release()
|
||||
|
||||
print("(last_time, second_time, dt) = ({}, {}, {})".format(last_time, second_time, second_time - last_time))
|
||||
print("mismatch between predicted state and measured state: {}\n\n".format(second_measurement - last_measurement))
|
||||
#print("(last_time, second_time, dt) = ({}, {}, {})".format(last_time, second_time, second_time - last_time))
|
||||
#print("mismatch between predicted state and measured state: {}\n\n".format(second_measurement - last_measurement))
|
||||
|
||||
for i in range(0, 1):
|
||||
u1 = us1[i]
|
||||
u2 = us2[i]
|
||||
#self.rc_socket.send('({},{},{})\n'.format(dt,u1, u2))
|
||||
self.rc_socket.send('({},{})\n'.format(u1, u2))
|
||||
if self.rc_socket:
|
||||
self.rc_socket.send('({},{})\n'.format(u1, u2))
|
||||
self.t = time.time()
|
||||
time.sleep(0.2)
|
||||
#time.sleep(0.2)
|
||||
#
|
||||
|
||||
|
||||
|
@ -506,7 +521,7 @@ def main(args):
|
|||
|
||||
screenheight = 480
|
||||
screenwidth = 640
|
||||
screen = pygame.display.set_mode([screenwidth, screenheight])
|
||||
pygame.display.set_mode([screenwidth, screenheight])
|
||||
|
||||
threading.Thread(target=rc.controller).start()
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user