Compare commits

..

No commits in common. "67405fbd3f49eebef0682d081c894a03ad8b2795" and "843b30f5d3d1651a2335066988307f470954cc29" have entirely different histories.

6 changed files with 438 additions and 401 deletions

View File

@ -1,29 +0,0 @@
import machine
class Motor:
def __init__(self, enable, dir1, dir2):
self.enable_pin = machine.Pin(enable, machine.Pin.OUT)
self.enable_pwm = machine.PWM(self.enable_pin)
self.enable_pwm.freq(250)
self.dir1_pin = machine.Pin(dir1, machine.Pin.OUT)
self.dir2_pin = machine.Pin(dir2, machine.Pin.OUT)
self.direction = 1 # default direction: dir1_pin = HIGH, dir2_pin = LOW
self.reverse()
def reverse(self):
self.direction = not self.direction
self.dir1_pin.value(self.direction)
self.dir2_pin.value(not self.direction)
def speed(self, value):
if value > 0: # forward
if not self.direction: # switch direction if necessary
self.reverse()
else: # backward
if self.direction: # switch direction if necessary
self.reverse()
# apply value as pwm signal
self.enable_pwm.duty(int(abs(value)*10.23))

View File

@ -2,25 +2,20 @@ import machine
import sys import sys
from machine import I2C, Pin from machine import I2C, Pin
i2c = False import d1motor
if i2c:
import d1motor
else:
import l293motor
import time import utime
import usocket import usocket
import uselect
import esp import esp
class Robot: class Robot:
def __init__(self): def __init__(self):
if i2c:
print("setting up I2C ...") print("setting up I2C ...")
#d1 = Pin(5) d1 = Pin(5)
#d2 = Pin(4) d2 = Pin(4)
#i2c = I2C(scl=d1, sda=d2) i2c = I2C(scl=d1, sda=d2)
#i2c_scan = i2c.scan() i2c_scan = i2c.scan()
i2c_scan = []
if len(i2c_scan) > 0: if len(i2c_scan) > 0:
i2c_addr = i2c_scan[0] i2c_addr = i2c_scan[0]
print("i2c scan = {}".format(i2c_addr)) print("i2c scan = {}".format(i2c_addr))
@ -33,15 +28,17 @@ class Robot:
else: else:
print("error: no i2c interfaces found!") print("error: no i2c interfaces found!")
sys.exit(1) sys.exit(1)
else:
print("setting up L293D motor")
self.m1 = l293motor.Motor(14, 13, 12)
self.m2 = l293motor.Motor(5, 0, 4)
ip = my_ip[0] ip = my_ip[0]
# setup socket for remote control # setup socket for remote control
self.addr = usocket.getaddrinfo(ip, 1234)[0][-1] self.addr = usocket.getaddrinfo(ip, 1234)[0][-1]
self.poller = uselect.poll()
self.poller_timeout = 2 # timeout in ms
self.control_queue = []
def remote_control(self): def remote_control(self):
while True: while True:
print("setting up socket communication ...") print("setting up socket communication ...")
@ -55,51 +52,124 @@ class Robot:
socket_setup_complete = True socket_setup_complete = True
except Exception as e: except Exception as e:
print("could not create socket. error msg: {}\nwaiting 1 sec and retrying...".format(e)) print("could not create socket. error msg: {}\nwaiting 1 sec and retrying...".format(e))
time.sleep(1.0) utime.sleep(1.0)
print("waiting for connections on {} ...".format(self.addr)) print("waiting for connections on {} ...".format(self.addr))
socket.listen(1) socket.listen(1)
res = socket.accept() # this blocks until someone connects to the socket res = socket.accept() # this blocks until someone connects to the socket
comm_socket = res[0] comm_socket = res[0]
self.poller.register(comm_socket, uselect.POLLIN)
print("connected!") print("connected!")
listening = True listening = True
try:
duration_current = 0
t_current = utime.ticks_ms()
duration_next = None
stopped = True
timeouts = 0
while listening: while listening:
# expected data: '(t, u1, u2)'\n" elapsed = utime.ticks_ms()
remaining = duration_current - (elapsed-t_current)
if remaining >= 0:
timeouts = 0
print("start of loop\n I have {} ms until next control needs to be applied".format(remaining))
else:
# current control timed out -> applying next control
if len(self.control_queue) > 0:
print("previous control applied for {} ms too long".format(elapsed - t_current - duration_current))
u_next = self.control_queue.pop(0)
#print("duration of previous control = {}".format((elapsed - t_current)/1000.0))
#print("applying new control (duration, u1, u2) = ({}, {}, {})".format(duration_next, u1_next, u2_next))
# if so, apply it
self.m1.speed(u_next[0])
self.m2.speed(u_next[1])
t_current = utime.ticks_ms()
duration_current = duration_next
stopped = False
elif not stopped:
print("previous control applied for {} ms too long".format(elapsed - t_current - duration_current))
#print("duration of previous control = {}".format((elapsed - t_current)/1000.0))
# no new control available -> shutdown
print("no new control available -> stopping")
self.m1.speed(0)
self.m2.speed(0)
t_current = utime.ticks_ms()
duration_current = 0 # as soon as new control will become available we directly want to apply it immediately
stopped = True
#elif timeouts < 10:
# print("start of loop\n I have {} ms until next control needs to be applied, timeouts = {}".format(remaining, timeouts))
# timeouts = timeouts + 1
trecv_start = utime.ticks_ms()
# expected data: '(t, u1_0, u2_0, u1_1, u2_1, ...)'\n"
# where ui = control for motor i # where ui = control for motor i
# ui \in [-1.0, 1.0] # ui \in [-1.0, 1.0]
#print("poller waiting..")
poll_res = self.poller.poll(self.poller_timeout) # wait 100 milliseconds for socket data
if poll_res:
print("new data available")
try:
data = comm_socket.readline() data = comm_socket.readline()
data_str = data.decode() data_str = data.decode()
print("Data received: {}".format(data_str)) #print("Data received: {}".format(data_str))
print("processing data = {}".format(data_str)) #print("processing data = {}".format(data_str))
l = data_str.strip('()\n').split(',') l = data_str.strip('()\n').split(',')
print("l = {}".format(l)) #print("l = {}".format(l))
u1 = int(float(l[0])*100) duration_next = int(float(l[0])*1000)
print("u1 = {}".format(u1)) #print("duration = {}".format(duration_next))
u2 = int(float(l[1])*100) self.control_queue = []
print("u2 = {}".format(u2)) print("putting data into queue")
for i in range((len(l)-1)/2):
self.m1.speed(u1) u1_next = int(float(l[2*i+1])*100)
self.m2.speed(u2) print("u1 = {}".format(u1_next))
u2_next = int(float(l[2*i+2])*100)
print("u2 = {}".format(u2_next))
self.control_queue.append((u1_next, u2_next))
except ValueError: except ValueError:
print("ValueError: Data has wrong format.") print("ValueError: Data has wrong format.")
print("Data received: {}".format(data_str)) print("Data received: {}".format(data_str))
except IndexError:
print("IndexError: Data has wrong format.")
print("Data received: {}".format(data_str))
except Exception as e:
print("Some other error occured")
print("Exception: {}".format(e))
finally:
print("Shutting down ...") print("Shutting down ...")
u1 = u2 = 0 self.control_queue = []
self.m1.speed(u1) duration_current = 0
self.m2.speed(u2)
listening = False listening = False
comm_socket.close() comm_socket.close()
socket.close() socket.close()
del comm_socket del comm_socket
del socket del socket
print("disconnected!")
except IndexError:
print("IndexError: Data has wrong format.")
print("Data received: {}".format(data_str))
print("Shutting down ...")
self.control_queue = []
duration_current = 0
listening = False
comm_socket.close()
socket.close()
del comm_socket
del socket
print("disconnected!")
except Exception as e:
print("Some other error occured")
print("Exception: {}".format(e))
print("Shutting down ...")
self.control_queue = []
duration_current = 0
listening = False
comm_socket.close()
socket.close()
del comm_socket
del socket
print("disconnected!")
trecv_end = utime.ticks_ms()
print("communication (incl. polling) took {} ms".format(trecv_end - trecv_start))
wall_e = Robot() wall_e = Robot()
wall_e.remote_control() wall_e.remote_control()

View File

@ -4,15 +4,13 @@ import time
# look at: https://github.com/casadi/casadi/blob/master/docs/examples/python/vdp_indirect_multiple_shooting.py # look at: https://github.com/casadi/casadi/blob/master/docs/examples/python/vdp_indirect_multiple_shooting.py
class OpenLoopSolver: class OpenLoopSolver:
def __init__(self, N=20, T=4.0): def __init__(self, N=10, T=2.0):
self.T = T self.T = T
self.N = N self.N = N
self.opti_x0 = None self.opti_x0 = None
self.opti_lam_g0 = None self.opti_lam_g0 = None
self.use_warmstart = True
def setup(self): def setup(self):
x = SX.sym('x') x = SX.sym('x')
y = SX.sym('y') y = SX.sym('y')
@ -137,9 +135,6 @@ class OpenLoopSolver:
#plt.show() #plt.show()
#return #return
def solve(self, x0, target, obstacles):
tstart = time.time()
# alternative solution using multiple shooting (way faster!) # alternative solution using multiple shooting (way faster!)
self.opti = Opti() # Optimization problem self.opti = Opti() # Optimization problem
@ -148,8 +143,6 @@ class OpenLoopSolver:
self.Q = self.opti.variable(1,self.N+1) # state trajectory self.Q = self.opti.variable(1,self.N+1) # state trajectory
self.U = self.opti.variable(2,self.N) # control trajectory (throttle) self.U = self.opti.variable(2,self.N) # control trajectory (throttle)
self.slack = self.opti.variable(1,1)
#T = self.opti.variable() # final time #T = self.opti.variable() # final time
# ---- objective --------- # ---- objective ---------
@ -164,6 +157,10 @@ class OpenLoopSolver:
#self.opti.set_initial(speed, 1) #self.opti.set_initial(speed, 1)
#self.opti.set_initial(T, 1) #self.opti.set_initial(T, 1)
def solve(self, x0, target):
tstart = time.time()
x = SX.sym('x') x = SX.sym('x')
y = SX.sym('y') y = SX.sym('y')
theta = SX.sym('theta') theta = SX.sym('theta')
@ -208,12 +205,12 @@ class OpenLoopSolver:
q_next = self.Q[:, k] + dt / 6 * (k1_q + 2 * k2_q + 2 * k3_q + k4_q) q_next = self.Q[:, k] + dt / 6 * (k1_q + 2 * k2_q + 2 * k3_q + k4_q)
self.opti.subject_to(self.X[:, k + 1] == x_next) # close the gaps self.opti.subject_to(self.X[:, k + 1] == x_next) # close the gaps
self.opti.subject_to(self.Q[:, k + 1] == q_next) # close the gaps self.opti.subject_to(self.Q[:, k + 1] == q_next) # close the gaps
self.opti.minimize(self.Q[:, self.N] + 1.0e5 * self.slack**2) self.opti.minimize(self.Q[:, self.N])
# ---- path constraints ----------- # ---- path constraints -----------
# limit = lambda pos: 1-sin(2*pi*pos)/2 # limit = lambda pos: 1-sin(2*pi*pos)/2
# self.opti.subject_to(speed<=limit(pos)) # track speed limit # self.opti.subject_to(speed<=limit(pos)) # track speed limit
maxcontrol = 0.95 maxcontrol = 0.5
self.opti.subject_to(self.opti.bounded(-maxcontrol, self.U, maxcontrol)) # control is limited self.opti.subject_to(self.opti.bounded(-maxcontrol, self.U, maxcontrol)) # control is limited
# ---- boundary conditions -------- # ---- boundary conditions --------
@ -230,12 +227,10 @@ class OpenLoopSolver:
# self.opti.subject_to(X[2,:]>=-2) # Time must be positive # self.opti.subject_to(X[2,:]>=-2) # Time must be positive
# avoid obstacle # avoid obstacle
for o in obstacles: # r = 0.25
p = obstacles[o].pos # p = (0.5, 0.5)
r = obstacles[o].radius # for k in range(self.N):
if p is not None: # self.opti.subject_to((X[0,k]-p[0])**2 + (X[1,k]-p[1])**2 > r**2)
for k in range(1,self.N):
self.opti.subject_to((self.X[0,k]-p[0])**2 + (self.X[1,k]-p[1])**2 + self.slack > r**2)
# pass # pass
posx = self.X[0, :] posx = self.X[0, :]
posy = self.X[1, :] posy = self.X[1, :]
@ -248,15 +243,11 @@ class OpenLoopSolver:
print("setting up problem took {} seconds".format(tend - tstart)) print("setting up problem took {} seconds".format(tend - tstart))
tstart = time.time() if self.opti_x0 is not None:
if self.use_warmstart and self.opti_x0 is not None:
self.opti.set_initial(self.opti.lam_g, self.opti_lam_g0) self.opti.set_initial(self.opti.lam_g, self.opti_lam_g0)
self.opti.set_initial(self.opti.x, self.opti_x0) self.opti.set_initial(self.opti.x, self.opti_x0)
sol = self.opti.solve() # actual solve sol = self.opti.solve() # actual solve
tend = time.time()
print("solving the problem took {} seconds".format(tend - tstart))
tstart = time.time()
self.opti_x0 = sol.value(self.opti.x) self.opti_x0 = sol.value(self.opti.x)
self.opti_lam_g0 = sol.value(self.opti.lam_g) self.opti_lam_g0 = sol.value(self.opti.lam_g)
@ -264,10 +255,8 @@ class OpenLoopSolver:
#u_opt_2 = map(lambda x: float(x), [u_opt[i * 2 + 1] for i in range(0, 60)]) #u_opt_2 = map(lambda x: float(x), [u_opt[i * 2 + 1] for i in range(0, 60)])
u_opt_1 = sol.value(self.U[0,:]) u_opt_1 = sol.value(self.U[0,:])
u_opt_2 = sol.value(self.U[1,:]) u_opt_2 = sol.value(self.U[1,:])
tend = time.time()
print("postprocessing took {} seconds".format(tend - tstart))
return (u_opt_1, u_opt_2, sol.value(posx), sol.value(posy)) return (u_opt_1, u_opt_2)
#lam_g0 = sol.value(self.opti.lam_g) #lam_g0 = sol.value(self.opti.lam_g)

View File

@ -1,150 +0,0 @@
import socket
import pygame
import pygame.joystick
class robot: # we have 4 arg for this class, because joysticks get the same (value, axis) events
def __init__(self, joy, ip, port):
self.joy = joy
self.ip = ip
self.port = port
self.robot0_stopped_1 = True
self.robot0_stopped_2 = True
self.robot0_stopped_3 = True
self.robot0_stopped_4 = True
self.rc_socket = socket.socket()
try:
self.rc_socket.connect((self.ip, self.port))
except socket.error():
print("couldn't connect to socket")
def joystick_init(self): # Joystick's initialisation
self.joystick = pygame.joystick.Joystick(self.joy)
self.joystick.init()
self.axes = self.joystick.get_numaxes()
def control(self, event): # the control of two robots with joysticks
joy = event.joy
value = event.value
axis = event.axis
if joy == self.joy:
if axis == 1:
if abs(value) > 0.2:
u1 = u2 = -value
self.rc_socket.send('({},{})\n'.format(u1, u2).encode())
self.robot0_stopped_1 = False
elif not self.robot0_stopped_1:
u1 = u2 = 0
self.rc_socket.send('({},{})\n'.format(u1, u2).encode())
self.robot0_stopped_1 = True
elif axis == 3:
if abs(value) > 0.2:
u1 = value
u2 = -value
self.rc_socket.send('({},{})\n'.format(u1, u2).encode())
self.robot0_stopped_2 = False
elif not self.robot0_stopped_2:
u1 = u2 = 0
self.rc_socket.send('({},{})\n'.format(u1, u2).encode())
self.robot0_stopped_2 = True
elif axis == 2:
if value > 0.2:
u1 = value/1.9
u2 = value/1.2
self.rc_socket.send('({},{})\n'.format(u1, u2).encode())
self.robot0_stopped_3 = False
elif not self.robot0_stopped_3:
u1 = u2 = 0
self.rc_socket.send('({},{})\n'.format(u1, u2).encode())
self.robot0_stopped_3 = True
elif axis == 5:
if value > 0.2:
u1 = value/1.2
u2 = value/1.9
self.rc_socket.send('({},{})\n'.format(u1, u2).encode())
self.robot0_stopped_4 = False
elif not self.robot0_stopped_4:
u1 = u2 = 0
self.rc_socket.send('({},{})\n'.format(u1, u2).encode())
self.robot0_stopped_4 = True
def control_keyboard(self, event): # keyboard control for robot1
command_received = False
if event.key == pygame.K_LEFT:
u1 = -1.0
u2 = 1.0
command_received = True
elif event.key == pygame.K_RIGHT:
u1 = 1.0
u2 = -1.0
command_received = True
elif event.key == pygame.K_UP:
u1 = -1.0
u2 = -1.0
command_received = True
elif event.key == pygame.K_DOWN:
u1 = 1.0
u2 = 1.0
command_received = True
if command_received:
self.rc_socket.send('({},{})\n'.format(u1, u2).encode())
def control_keyboard_2(self, event): # keyboard control for robot2
command_received = False
if event.key == pygame.K_a:
u1 = -1.0
u2 = 1.0
command_received = True
elif event.key == pygame.K_d:
u1 = 1.0
u2 = -1.0
command_received = True
elif event.key == pygame.K_w:
u1 = -1.0
u2 = -1.0
command_received = True
elif event.key == pygame.K_s:
u1 = 1.0
u2 = 1.0
command_received = True
if command_received:
self.rc_socket.send('({},{})\n'.format(u1, u2).encode())
def control_keyboard_stop(self): # stop for both robot
u1 = 0
u2 = 0
print("key released, resetting: ({},{})".format(u1, u2))
self.rc_socket.send('({},{})\n'.format(u1, u2).encode())
def main():
pygame.init()
pygame.display.set_mode((640, 480))
robot_1 = robot(0, '192.168.1.102', 1234)
robot_1.joystick_init()
robot_2 = robot(1, '192.168.1.103', 1234)
robot_2.joystick_init()
while True:
events = pygame.event.get()
for event in events:
if event.type == pygame.JOYAXISMOTION:
robot_1.control(event)
robot_2.control(event)
elif event.type == pygame.KEYDOWN:
robot_1.control_keyboard(event)
robot_2.control_keyboard_2(event)
elif event.type == pygame.KEYUP:
robot_1.control_keyboard_stop()
robot_2.control_keyboard_stop()
if __name__ == '__main__':
main()

View File

@ -7,9 +7,9 @@ pygame.display.set_mode((640, 480))
rc_socket = socket.socket() rc_socket = socket.socket()
try: try:
#rc_socket.connect(('192.168.4.1', 1234)) # connect to robot #rc_socket.connect(('192.168.4.1', 1234)) # connect to robot
#rc_socket.connect(('192.168.1.101', 1234)) # connect to robot rc_socket.connect(('192.168.1.101', 1234)) # connect to robot
#rc_socket.connect(('192.168.1.102', 1234)) # connect to robot #rc_socket.connect(('192.168.1.102', 1234)) # connect to robot
rc_socket.connect(('192.168.1.103', 1234)) # connect to robot #rc_socket.connect(('192.168.1.103', 1234)) # connect to robot
except socket.error: except socket.error:
print("could not connect to socket") print("could not connect to socket")
@ -17,7 +17,7 @@ except socket.error:
while True: while True:
u1 = 0 u1 = 0
u2 = 0 u2 = 0
vmax = 1.0 vmax = 0.5
events = pygame.event.get() events = pygame.event.get()
for event in events: for event in events:
if event.type == pygame.KEYDOWN: if event.type == pygame.KEYDOWN:

View File

@ -18,7 +18,6 @@ from copy import deepcopy
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import matplotlib.animation as anim import matplotlib.animation as anim
import matplotlib.patches as patch
import time import time
@ -38,12 +37,6 @@ class Robot:
self.ip = ip self.ip = ip
class Obstacle:
def __init__(self, id, radius):
self.id = id
self.pos = None
self.radius = radius
def f_ode(t, x, u): def f_ode(t, x, u):
# dynamical model of the two-wheeled robot # dynamical model of the two-wheeled robot
# TODO: find exact values for these parameters # TODO: find exact values for these parameters
@ -69,28 +62,19 @@ def f_ode(t, x, u):
class RemoteController: class RemoteController:
def __init__(self): def __init__(self):
self.robots = [Robot(3, '192.168.1.103')] self.robots = [Robot(5)]
self.robot_ids = {} self.robot_ids = {}
for r in self.robots: for r in self.robots:
self.robot_ids[r.id] = r self.robot_ids[r.id] = r
obst = [Obstacle(6, 0.175), Obstacle(5, 0.175), Obstacle(8, 0.175)]
self.obstacles = {}
for r in obst:
self.obstacles[r.id] = r
# connect to robot # connect to robot
self.rc_socket = socket.socket() self.rc_socket = socket.socket()
#self.rc_socket = None
try: try:
for r in self.robots: pass
self.rc_socket.connect((r.ip, 1234)) # connect to robot self.rc_socket.connect(('192.168.1.103', 1234)) # connect to robot
except socket.error: except socket.error:
print("could not connect to socket") print("could not connect to socket")
self.rc_socket = None
self.t = time.time() self.t = time.time()
@ -105,19 +89,23 @@ class RemoteController:
self.tms = None self.tms = None
self.xms = None self.xms = None
# variable for mpc open loop
self.ol_x = None
self.ol_y = None
self.mutex = threading.Lock() self.mutex = threading.Lock()
# ROS subscriber for detected markers
marker_sub = rospy.Subscriber("/marker_id_pos_angle", id_pos_angle, self.measurement_callback) marker_sub = rospy.Subscriber("/marker_id_pos_angle", id_pos_angle, self.measurement_callback)
# pid parameters # pid parameters
self.k = 0
self.ii = 0.1
self.pp = 0.4
self.inc = 0.0
self.alphas = []
self.speed = 1.0
self.controlling = False self.controlling = False
# currently active control
self.u1 = 0.0 self.u1 = 0.0
self.u2 = 0.0 self.u2 = 0.0
@ -125,34 +113,19 @@ class RemoteController:
self.fig = plt.figure() self.fig = plt.figure()
self.ax = self.fig.add_subplot(1,1,1) self.ax = self.fig.add_subplot(1,1,1)
self.xdata, self.ydata = [], [] self.xdata, self.ydata = [], []
self.line, = self.ax.plot([],[], color='grey', linestyle=':') self.line, = self.ax.plot([],[])
self.line_sim, = self.ax.plot([], []) self.line_sim, = self.ax.plot([], [])
self.line_ol, = self.ax.plot([],[], color='green', linestyle='--')
self.dirm, = self.ax.plot([], []) self.dirm, = self.ax.plot([], [])
self.dirs, = self.ax.plot([], []) self.dirs, = self.ax.plot([], [])
self.circles = []
for o in self.obstacles:
self.circles.append(patch.Circle((0.0, 0.0), radius=0.1, fill=False, color='red', linestyle='--'))
for s in self.circles:
self.ax.add_artist(s)
plt.xlabel('x-position') plt.xlabel('x-position')
plt.ylabel('y-position') plt.ylabel('y-position')
plt.grid() plt.grid()
self.ols = OpenLoopSolver() self.ols = OpenLoopSolver()
self.ols.setup() self.ols.setup()
self.dt = self.ols.T / self.ols.N
self.target = (0.0, 0.0, 0.0) self.target = (0.0, 0.0, 0.0)
# integrator
self.r = scipy.integrate.ode(f_ode)
self.omega_max = 5.0
def ani(self): def ani(self):
self.ani = anim.FuncAnimation(self.fig, init_func=self.ani_init, func=self.ani_update, interval=10, blit=True) self.ani = anim.FuncAnimation(self.fig, init_func=self.ani_init, func=self.ani_update, interval=10, blit=True)
plt.ion() plt.ion()
@ -163,7 +136,7 @@ class RemoteController:
self.ax.set_ylim(-2, 2) self.ax.set_ylim(-2, 2)
self.ax.set_aspect('equal', adjustable='box') self.ax.set_aspect('equal', adjustable='box')
return self.line, self.line_sim, self.dirm, self.dirs, self.line_ol, self.circles[0], self.circles[1],self.circles[2], return self.line, self.line_sim, self.dirm, self.dirs,
def ani_update(self, frame): def ani_update(self, frame):
#print("plotting") #print("plotting")
@ -182,8 +155,8 @@ class RemoteController:
a = xm_local[-1, 0] a = xm_local[-1, 0]
b = xm_local[-1, 1] b = xm_local[-1, 1]
a2 = a + np.cos(xm_local[-1, 2]) * 0.2 a2 = a + np.cos(xm_local[-1, 2]) * 1.0
b2 = b + np.sin(xm_local[-1, 2]) * 0.2 b2 = b + np.sin(xm_local[-1, 2]) * 1.0
self.dirm.set_data(np.array([a, a2]), np.array([b, b2])) self.dirm.set_data(np.array([a, a2]), np.array([b, b2]))
@ -198,42 +171,26 @@ class RemoteController:
a = xs_local[-1, 0] a = xs_local[-1, 0]
b = xs_local[-1, 1] b = xs_local[-1, 1]
a2 = a + np.cos(xs_local[-1, 2]) * 0.2 a2 = a + np.cos(xs_local[-1, 2]) * 1.0
b2 = b + np.sin(xs_local[-1, 2]) * 0.2 b2 = b + np.sin(xs_local[-1, 2]) * 1.0
self.dirs.set_data(np.array([a, a2]), np.array([b, b2])) self.dirs.set_data(np.array([a, a2]), np.array([b, b2]))
ol_x_local = deepcopy(self.ol_x)
ol_y_local = deepcopy(self.ol_y)
if ol_x_local is not None:
self.line_ol.set_data(ol_x_local, ol_y_local)
else:
self.line_ol.set_data([],[])
i = 0
obst_keys = self.obstacles.keys()
for s in self.circles:
o = self.obstacles[obst_keys[i]]
i = i + 1
if o.pos is not None:
s.center = o.pos
s.radius = o.radius
finally: finally:
self.mutex.release() self.mutex.release()
return self.line, self.line_sim, self.dirm, self.dirs, self.line_ol, self.circles[0], self.circles[1],self.circles[2], return self.line, self.line_sim, self.dirm, self.dirs,
def measurement_callback(self, data): def measurement_callback(self, data):
# detect robots #print("data = {}".format(data))
if data.id in self.robot_ids: if data.id in self.robot_ids:
r = self.robot_ids[data.id] r = self.robot_ids[data.id]
r.pos = (data.x, data.y) # only x and y component are important for us r.pos = (data.x, data.y) # only x and y component are important for us
r.euler = data.angle r.euler = data.angle
#print("r.pos = {}".format(r.pos))
#print("r.angle = {}".format(r.euler))
# save measured position and angle for plotting # save measured position and angle for plotting
measurement = np.array([r.pos[0], r.pos[1], r.euler]) measurement = np.array([r.pos[0], r.pos[1], r.euler])
if self.tms_0 is None: if self.tms_0 is None:
@ -254,16 +211,194 @@ class RemoteController:
finally: finally:
self.mutex.release() self.mutex.release()
# detect obstacles
if data.id in self.obstacles.keys():
obst = (data.x, data.y)
self.obstacles[data.id].pos = obst
def controller(self): def controller(self):
tgrid = None
us1 = None
us2 = None
u1 = -0.0
u2 = 0.0
r = scipy.integrate.ode(f_ode)
omega_max = 5.0
init_pos = None
init_time = None
final_pos = None
final_time = None
forward = True
print("starting control") print("starting control")
while True: while True:
keyboard_control = False
keyboard_control_speed_test = False
pid = False
open_loop_solve = True
if keyboard_control: # keyboard controller
events = pygame.event.get()
speed = 1.0
for event in events:
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_LEFT:
self.u1 = -speed
self.u2 = speed
#print("turn left: ({},{})".format(u1, u2))
elif event.key == pygame.K_RIGHT:
self.u1 = speed
self.u2 = -speed
#print("turn right: ({},{})".format(u1, u2))
elif event.key == pygame.K_UP:
self.u1 = speed
self.u2 = speed
#print("forward: ({},{})".format(self.u1, self.u2))
elif event.key == pygame.K_DOWN:
self.u1 = -speed
self.u2 = -speed
#print("forward: ({},{})".format(u1, u2))
self.rc_socket.send('({},{},{})\n'.format(0.1, self.u1, self.u2))
elif event.type == pygame.KEYUP:
self.u1 = 0
self.u2 = 0
#print("key released, resetting: ({},{})".format(u1, u2))
self.rc_socket.send('({}, {},{})\n'.format(0.1, self.u1, self.u2))
tnew = time.time()
dt = tnew - self.t
r = scipy.integrate.ode(f_ode)
r.set_f_params(np.array([self.u1 * omega_max, self.u2 * omega_max]))
#print(self.x0)
if self.x0 is None:
if self.xm_0 is not None:
self.x0 = self.xm_0
self.xs = self.x0
else:
print("error: no measurement available to initialize simulation")
x = self.x0
r.set_initial_value(x, self.t)
xnew = r.integrate(r.t + dt)
self.t = tnew
self.x0 = xnew
self.mutex.acquire()
try:
self.ts = np.append(self.ts, tnew)
self.xs = np.vstack((self.xs, xnew))
finally:
self.mutex.release()
elif keyboard_control_speed_test:
events = pygame.event.get()
for event in events:
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_1:
self.controlling = True
forward = True
print("starting test")
self.mutex.acquire()
try:
init_pos = copy.deepcopy(self.xms[-1])
init_time = copy.deepcopy(self.tms[-1])
finally:
self.mutex.release()
if event.key == pygame.K_2:
self.controlling = True
forward = False
print("starting test")
self.mutex.acquire()
try:
init_pos = copy.deepcopy(self.xms[-1])
init_time = copy.deepcopy(self.tms[-1])
finally:
self.mutex.release()
elif event.key == pygame.K_3:
self.controlling = False
print("stopping test")
self.rc_socket.send('(0.1, 0.0,0.0)\n')
self.mutex.acquire()
try:
final_pos = copy.deepcopy(self.xms[-1])
final_time = copy.deepcopy(self.tms[-1])
finally:
self.mutex.release()
print("init_pos = {}".format(init_pos))
print("final_pos = {}".format(final_pos))
print("distance = {}".format(np.linalg.norm(init_pos[0:2]-final_pos[0:2])))
print("dt = {}".format(final_time - init_time))
d = np.linalg.norm(init_pos[0:2]-final_pos[0:2])
t = final_time - init_time
r = 0.03
angular_velocity = d/r/t
print("average angular velocity = {}".format(angular_velocity))
if self.controlling:
if forward:
self.rc_socket.send('(0.1, 1.0,1.0)\n')
else:
self.rc_socket.send('(0.1, -1.0,-1.0)\n')
time.sleep(0.1)
#print("speed = {}".format(self.speed))
elif pid:
# pid controller
events = pygame.event.get()
for event in events:
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_LEFT:
self.ii = self.ii / np.sqrt(np.sqrt(np.sqrt(10.0)))
print("ii = {}".format(self.pp))
elif event.key == pygame.K_RIGHT:
self.ii = self.ii * np.sqrt(np.sqrt(np.sqrt(10.0)))
print("ii = {}".format(self.pp))
elif event.key == pygame.K_UP:
self.controlling = True
elif event.key == pygame.K_DOWN:
self.controlling = False
self.rc_socket.send('({},{})\n'.format(0, 0))
dt = 0.05
if self.controlling:
# test: turn robot such that angle is zero
for r in self.robots:
if r.euler is not None:
self.k = self.k + 1
alpha = r.euler
self.alphas.append(alpha)
# compute error
e = alpha - 0
# compute integral of error (approximately)
self.inc += e * dt
# PID
p = self.pp * e
i = self.ii * self.inc
d = 0.0
# compute controls for robot from PID
u1 = p + i + d
u2 = - p - i - d
print("alpha = {}, u = ({}, {})".format(alpha, u1, u2))
self.rc_socket.send('({},{})\n'.format(u1, u2))
time.sleep(dt)
elif open_loop_solve:
# open loop controller # open loop controller
events = pygame.event.get() events = pygame.event.get()
for event in events: for event in events:
if event.type == pygame.KEYDOWN: if event.type == pygame.KEYDOWN:
@ -272,8 +407,7 @@ class RemoteController:
self.t = time.time() self.t = time.time()
elif event.key == pygame.K_DOWN: elif event.key == pygame.K_DOWN:
self.controlling = False self.controlling = False
if self.rc_socket: self.rc_socket.send('(0.1, 0.0,0.0)\n')
self.rc_socket.send('(0.0,0.0)\n')
elif event.key == pygame.K_0: elif event.key == pygame.K_0:
self.target = (0.0, 0.0, 0.0) self.target = (0.0, 0.0, 0.0)
elif event.key == pygame.K_1: elif event.key == pygame.K_1:
@ -284,42 +418,8 @@ class RemoteController:
self.target = (-0.5,-0.5, np.pi/2.0) self.target = (-0.5,-0.5, np.pi/2.0)
elif event.key == pygame.K_4: elif event.key == pygame.K_4:
self.target = (-0.5,0.5, 0.0) self.target = (-0.5,0.5, 0.0)
if self.controlling: if self.controlling:
x_pred = self.get_measurement_prediction()
tmpc_start = time.time() tmpc_start = time.time()
# solve mpc open loop problem
res = self.ols.solve(x_pred, self.target, self.obstacles)
us1 = res[0]
us2 = res[1]
# save open loop trajectories for plotting
self.mutex.acquire()
try:
self.ol_x = res[2]
self.ol_y = res[3]
finally:
self.mutex.release()
tmpc_end = time.time()
print("---------------- mpc solution took {} seconds".format(tmpc_end - tmpc_start))
dt_mpc = time.time() - self.t
if dt_mpc < self.dt: # wait until next control can be applied
print("sleeping for {} seconds...".format(self.dt - dt_mpc))
time.sleep(self.dt - dt_mpc)
# send controls to the robot
for i in range(0, 1): # option to use multistep mpc if len(range) > 1
u1 = us1[i]
u2 = us2[i]
if self.rc_socket:
self.rc_socket.send('({},{})\n'.format(u1, u2))
self.t = time.time() # save time the most recent control was applied
def get_measurement_prediction(self):
# get measurement # get measurement
self.mutex.acquire() self.mutex.acquire()
try: try:
@ -328,15 +428,73 @@ class RemoteController:
finally: finally:
self.mutex.release() self.mutex.release()
print("current measurement (t, x) = ({}, {})".format(last_time, last_measurement))
print("current control (u1, u2) = ({}, {})".format(u1, u2))
# prediction of state at time the mpc will terminate # prediction of state at time the mpc will terminate
self.r.set_f_params(np.array([self.u1 * self.omega_max, self.u2 * self.omega_max])) r.set_f_params(np.array([u1 * omega_max, u2 * omega_max]))
self.r.set_initial_value(last_measurement, last_time) r.set_initial_value(last_measurement, last_time)
dt = self.ols.T/self.ols.N
print("integrating for {} seconds".format((dt)))
x_pred = r.integrate(r.t + (dt))
x_pred = self.r.integrate(self.r.t + self.dt) print("predicted initial state x_pred = ({})".format(x_pred))
return x_pred res = self.ols.solve(x_pred, self.target)
#tgrid = res[0]
us1 = res[0]
us2 = res[1]
# tt = 0
# x = last_measurement
# t_ol = np.array([tt])
# x_ol = np.array([x])
# # compute open loop prediction
# for i in range(len(us1)):
# r = scipy.integrate.ode(f_ode)
# r.set_f_params(np.array([us1[i] * 13.32, us2[i] * 13.32]))
# r.set_initial_value(x, tt)
#
# tt = tt + 0.1
# x = r.integrate(tt)
#
# t_ol = np.vstack((t_ol, tt))
# x_ol = np.vstack((x_ol, x))
#plt.figure(4)
#plt.plot(x_ol[:,0], x_ol[:,1])
#if event.key == pygame.K_DOWN:
# if tgrid is not None:
tmpc_end = time.time()
print("---------------- mpc solution took {} seconds".format(tmpc_end - tmpc_start))
dt_mpc = time.time() - self.t
if dt_mpc < dt:
print("sleeping for {} seconds...".format(dt - dt_mpc))
time.sleep(dt - dt_mpc)
self.mutex.acquire()
try:
second_measurement = copy.deepcopy(self.xms[-1])
second_time = copy.deepcopy(self.tms[-1])
finally:
self.mutex.release()
print("(last_time, second_time, dt) = ({}, {}, {})".format(last_time, second_time, second_time - last_time))
print("mismatch between predicted state and measured state: {}\n\n".format(second_measurement - last_measurement))
for i in range(0, 1):
u1 = us1[i]
u2 = us2[i]
self.rc_socket.send('({},{},{})\n'.format(dt,u1, u2))
self.t = time.time()
#time.sleep(0.2)
#
pass
def main(args): def main(args):
rospy.init_node('controller_node', anonymous=True) rospy.init_node('controller_node', anonymous=True)
@ -347,9 +505,8 @@ def main(args):
screenheight = 480 screenheight = 480
screenwidth = 640 screenwidth = 640
pygame.display.set_mode([screenwidth, screenheight]) screen = pygame.display.set_mode([screenwidth, screenheight])
#threading.Thread(target=rc.input_handling).start()
threading.Thread(target=rc.controller).start() threading.Thread(target=rc.controller).start()
rc.ani() rc.ani()