514 lines
17 KiB
Python
514 lines
17 KiB
Python
# startup:
|
|
# roscore
|
|
# rosparam set cv_camera/device_id 0
|
|
# rosrun cv_camera cv_camera_node
|
|
|
|
import sys
|
|
import rospy
|
|
import pygame
|
|
import numpy as np
|
|
import cv2
|
|
import cv2.aruco as aruco
|
|
import socket
|
|
import scipy.integrate
|
|
|
|
import threading
|
|
from copy import deepcopy
|
|
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.animation as anim
|
|
|
|
import time
|
|
|
|
from sensor_msgs.msg import Image
|
|
from sensor_msgs.msg import CompressedImage
|
|
from cv_bridge import CvBridge, CvBridgeError
|
|
import math
|
|
|
|
pygame.init()
|
|
pygame.font.init()
|
|
#pygame.joystick.init()
|
|
|
|
myfont = pygame.font.SysFont('Comic Sans MS', 30)
|
|
pygame.display.set_caption("ROS camera stream on Pygame")
|
|
screenheight = 1024
|
|
screenwidth = 1280 #4*screenheight//3
|
|
screen = pygame.display.set_mode([screenwidth, screenheight])
|
|
red = (255, 0, 0)
|
|
teal = (0, 255, 255)
|
|
|
|
# ros setup
|
|
camera_stream = "/cv_camera/image_raw"
|
|
#camera_stream = "/image_raw"
|
|
compression = False
|
|
|
|
|
|
# taken from https://www.learnopencv.com/rotation-matrix-to-euler-angles/
|
|
# Checks if a matrix is a valid rotation matrix.
|
|
def isRotationMatrix(R):
|
|
Rt = np.transpose(R)
|
|
shouldBeIdentity = np.dot(Rt, R)
|
|
I = np.identity(3, dtype=R.dtype)
|
|
n = np.linalg.norm(I - shouldBeIdentity)
|
|
return n < 1e-6
|
|
|
|
|
|
# Calculates rotation matrix to euler angles
|
|
# The result is the same as MATLAB except the order
|
|
# of the euler angles ( x and z are swapped ).
|
|
def rotationMatrixToEulerAngles(R):
|
|
assert (isRotationMatrix(R))
|
|
|
|
sy = math.sqrt(R[0, 0] * R[0, 0] + R[1, 0] * R[1, 0])
|
|
|
|
singular = sy < 1e-6
|
|
|
|
if not singular:
|
|
x = math.atan2(R[2, 1], R[2, 2])
|
|
y = math.atan2(-R[2, 0], sy)
|
|
z = math.atan2(R[1, 0], R[0, 0])
|
|
else:
|
|
x = math.atan2(-R[1, 2], R[1, 1])
|
|
y = math.atan2(-R[2, 0], sy)
|
|
z = 0
|
|
|
|
return np.array([x, y, z])
|
|
|
|
class Robot:
|
|
def __init__(self, id, ip=None):
|
|
self.pos = None
|
|
self.orient = None
|
|
|
|
self.id = id
|
|
|
|
self.pos = None
|
|
self.euler = None
|
|
|
|
self.ip = ip
|
|
|
|
def f_ode(t, x, u):
|
|
# dynamical model of the two-wheeled robot
|
|
# TODO: find exact values for these parameters
|
|
r = 0.03
|
|
R = 0.05
|
|
d = 0.02
|
|
|
|
theta = x[2]
|
|
|
|
omega_r = u[0]
|
|
omega_l = u[1]
|
|
|
|
dx = np.zeros(3)
|
|
|
|
dx[0] = (r/2.0 * np.cos(theta) - r*d/(2.0*R) * np.sin(theta)) * omega_r \
|
|
+ (r/2.0 * np.cos(theta) + r*d/(2.0 * R) * np.sin(theta)) * omega_l
|
|
dx[1] = (r/2.0 * np.sin(theta) + r*d/(2.0*R) * np.cos(theta)) * omega_r \
|
|
+ (r/2 * np.sin(theta) - r*d/(2.0*R) * np.cos(theta)) * omega_l
|
|
dx[2] = -r/(2.0*R) * (omega_r - omega_l)
|
|
|
|
return dx
|
|
|
|
class RemoteController:
|
|
def __init__(self):
|
|
#self.cam = cv2.VideoCapture(1)
|
|
|
|
#self.image_pub = rospy.Publisher("pygame_image", Image)
|
|
|
|
self.bridge = CvBridge()
|
|
|
|
#self.cv_image = np.zeros((1, 1, 3), np.uint8)
|
|
self.cv_image = None
|
|
|
|
self.robots = [Robot(2), Robot(6), Robot(7), Robot(8), Robot(9)]
|
|
|
|
self.robot_ids = [r.id for r in self.robots]
|
|
|
|
screen.fill([0, 0, 0])
|
|
|
|
cv_file = cv2.FileStorage("test.yaml", cv2.FILE_STORAGE_READ)
|
|
self.camera_matrix = cv_file.getNode("camera_matrix").mat()
|
|
self.dist_matrix = cv_file.getNode("dist_coeff").mat()
|
|
|
|
self.aruco_dict = aruco.Dictionary_get(aruco.DICT_ARUCO_ORIGINAL)
|
|
self.parameters = aruco.DetectorParameters_create()
|
|
|
|
self.rc_socket = socket.socket()
|
|
try:
|
|
pass
|
|
self.rc_socket.connect(('192.168.4.1', 1234)) # connect to robot
|
|
except socket.error:
|
|
print("could not connect to socket")
|
|
|
|
self.mutex = threading.Lock()
|
|
|
|
self.k = 0
|
|
self.ii = 0.1
|
|
self.pp = 0.4
|
|
|
|
self.inc = 0.0
|
|
|
|
self.alphas = []
|
|
|
|
self.speed = 1.0
|
|
self.controlling = False
|
|
|
|
self.u1 = 0.0
|
|
self.u2 = 0.0
|
|
|
|
self.t = time.time()
|
|
self.x0 = np.zeros(3)
|
|
|
|
self.ts = np.array([0.0])
|
|
self.xs = np.array([[0.0, 0.0, 0.0]])
|
|
self.ys = []
|
|
self.omegas = []
|
|
|
|
self.tms_0 = None
|
|
self.tms = None #np.array([0.0])
|
|
self.xm_0 = None
|
|
self.xms = None #np.array([[0.0, 0.0, 0.0]])
|
|
self.alpha_0 = None
|
|
self.alphas = []
|
|
|
|
self.pos_0 = None
|
|
self.possx = []
|
|
self.possy = []
|
|
|
|
if compression:
|
|
self.image_sub = rospy.Subscriber(camera_stream + "/compressed", CompressedImage, self.callback)
|
|
else:
|
|
self.image_sub = rospy.Subscriber(camera_stream, Image, self.callback)
|
|
|
|
self.fig = plt.figure()
|
|
self.ani = anim.FuncAnimation(self.fig, init_func=self.ani_init, func=self.ani_update, interval=10, blit=True)
|
|
|
|
self.ax = self.fig.add_subplot(1,1,1)
|
|
self.xdata, self.ydata = [], []
|
|
self.line, = self.ax.plot([],[])
|
|
self.line_sim, = self.ax.plot([], [])
|
|
self.dir, = self.ax.plot([], [])
|
|
plt.xlabel('x-position')
|
|
plt.ylabel('y-position')
|
|
|
|
|
|
|
|
def ani_init(self):
|
|
self.ax.set_xlim(-2, 2)
|
|
self.ax.set_ylim(-2, 2)
|
|
self.ax.set_aspect('equal', adjustable='box')
|
|
|
|
return self.line, self.line_sim, self.dir,
|
|
|
|
def ani_update(self, frame):
|
|
self.mutex.acquire()
|
|
try:
|
|
# copy data for plot from global arrays
|
|
if self.tms is not None:
|
|
tm_local = deepcopy(self.tms)
|
|
xm_local = deepcopy(self.xms)
|
|
|
|
#print(len(tm_local))
|
|
|
|
if len(tm_local) > 0:
|
|
self.line.set_data(xm_local[:,0], xm_local[:,1])
|
|
|
|
a = xm_local[-1, 0]
|
|
b = xm_local[-1, 0]
|
|
|
|
a2 = a + np.cos(xm_local[-1, 2]) * 1.0
|
|
b2 = b + np.sin(xm_local[-1, 2]) * 1.0
|
|
|
|
self.dir.set_data(np.array([a, a2]), np.array([b, b2]))
|
|
|
|
ts_local = deepcopy(self.ts)
|
|
xs_local = deepcopy(self.xs)
|
|
|
|
if len(ts_local) > 0:
|
|
self.line_sim.set_data(xs_local[:,0], xs_local[:,1])
|
|
finally:
|
|
self.mutex.release()
|
|
|
|
return self.line, self.line_sim, self.dir,
|
|
|
|
def callback(self, data):
|
|
|
|
#self.cv_image_small = np.fliplr(self.cv_image_small) # why is this necessary?
|
|
|
|
# marker detection
|
|
#gray = cv2.cvtColor(self.cv_image, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
#print("robot {} pos = {}".format(r.id, r.pos))
|
|
|
|
#ret_val, self.cv_image = self.cam.read()
|
|
try:
|
|
if compression:
|
|
self.cv_image = self.bridge.compressed_imgmsg_to_cv2(data)
|
|
else:
|
|
self.cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
|
|
except CvBridgeError as e:
|
|
print(e)
|
|
|
|
corners, ids, rejectedImgPoints = aruco.detectMarkers(self.cv_image, self.aruco_dict, parameters=self.parameters)
|
|
marker_found = len(corners) > 0
|
|
|
|
if marker_found:
|
|
markers = zip(corners, ids)
|
|
#print("found!")
|
|
# filter markers with unknown ids
|
|
#print("detected markers = {}".format(markers))
|
|
markers_filtered = list(filter(lambda x: x[1] in self.robot_ids, markers))
|
|
#print("filtered markers = {}".format(markers_filtered))
|
|
if len(markers_filtered) > 0:
|
|
filtered_corners, filtered_ids = zip(*markers_filtered)
|
|
#print("filtered corners = {}".format(filtered_corners[0]))
|
|
|
|
rvec, tvec, _ = aruco.estimatePoseSingleMarkers(filtered_corners, 0.1, self.camera_matrix,
|
|
self.dist_matrix)
|
|
|
|
aruco.drawDetectedMarkers(self.cv_image, filtered_corners)
|
|
for i in range(len(filtered_corners)):
|
|
aruco.drawAxis(self.cv_image, self.camera_matrix, self.dist_matrix, rvec[i], tvec[i],
|
|
0.1)
|
|
|
|
for r in self.robots:
|
|
if r.id == filtered_ids[i]:
|
|
r.pos = tvec[i][0] # only x and y component are important for us
|
|
r.orient = rvec[i][0]
|
|
r.rot_mat, r.jacobian = cv2.Rodrigues(r.orient)
|
|
r.euler = rotationMatrixToEulerAngles(r.rot_mat)
|
|
|
|
# save measured position and angle for plotting
|
|
measurement = np.array([-r.pos[0], -r.pos[1], r.euler[2] + np.pi/4.0])
|
|
if self.xm_0 is None:
|
|
self.tms_0 = time.time()
|
|
self.xm_0 = deepcopy(measurement)
|
|
self.xm_0[2] = 0.0
|
|
|
|
self.tms = np.array([self.tms_0])
|
|
self.xms = measurement - self.xm_0
|
|
else:
|
|
self.mutex.acquire()
|
|
try:
|
|
self.tms = np.vstack((self.tms, time.time() - self.tms_0))
|
|
self.xms = np.vstack((self.xms, measurement - self.xm_0))
|
|
|
|
if len(self.tms) == 50:
|
|
self.alpha_0 = np.mean(self.xms[:,2])
|
|
finally:
|
|
self.mutex.release()
|
|
|
|
def show_display(self):
|
|
while self.alpha_0 is None:
|
|
pass
|
|
self.x0[2] = self.alpha_0
|
|
print("alpha_0 = {}".format(self.alpha_0))
|
|
print("show_display")
|
|
while True:
|
|
#self.capture()
|
|
|
|
# show ros camera image on the pygame screen
|
|
if self.cv_image is not None:
|
|
image = cv2.resize(self.cv_image,(screenwidth,screenheight))
|
|
frame = cv2.cvtColor(self.cv_image, cv2.COLOR_BGR2RGB)
|
|
frame = np.rot90(frame)
|
|
frame = pygame.surfarray.make_surface(frame)
|
|
screen.blit(frame, (0, 0))
|
|
|
|
# plot robot positions
|
|
for r in self.robots:
|
|
if r.euler is not None:
|
|
#print("r.pos = {}".format(r.pos))
|
|
#print("r.euler = {}".format(r.euler[2]))
|
|
#print("drawing at {}".format(r.pos))
|
|
#pygame.draw.circle(screen, (255, 0, 0), r.pos, 10)
|
|
pass
|
|
|
|
pygame.display.update()
|
|
|
|
keyboard_control = True
|
|
keyboard_control_speed_test = False
|
|
pid = False
|
|
|
|
if keyboard_control:
|
|
events = pygame.event.get()
|
|
speed = 1.0
|
|
for event in events:
|
|
if event.type == pygame.KEYDOWN:
|
|
if event.key == pygame.K_LEFT:
|
|
self.u1 = speed
|
|
self.u2 = -speed
|
|
#print("turn left: ({},{})".format(u1, u2))
|
|
elif event.key == pygame.K_RIGHT:
|
|
self.u1 = -speed
|
|
self.u2 = speed
|
|
#print("turn right: ({},{})".format(u1, u2))
|
|
elif event.key == pygame.K_UP:
|
|
self.u1 = -speed
|
|
self.u2 = -speed
|
|
print("forward: ({},{})".format(self.u1, self.u2))
|
|
elif event.key == pygame.K_DOWN:
|
|
self.u1 = speed
|
|
self.u2 = speed
|
|
#print("forward: ({},{})".format(u1, u2))
|
|
self.rc_socket.send('({},{})\n'.format(self.u1, self.u2))
|
|
elif event.type == pygame.KEYUP:
|
|
self.u1 = 0
|
|
self.u2 = 0
|
|
#print("key released, resetting: ({},{})".format(u1, u2))
|
|
self.rc_socket.send('({},{})\n'.format(self.u1, self.u2))
|
|
|
|
tnew = time.time()
|
|
dt = tnew - self.t
|
|
r = scipy.integrate.ode(f_ode)
|
|
r.set_f_params(np.array([self.u1 * 13.32, self.u2 * 13.32]))
|
|
|
|
x = self.x0
|
|
r.set_initial_value(x, self.t)
|
|
xnew = r.integrate(r.t + dt)
|
|
|
|
self.t = tnew
|
|
self.x0 = xnew
|
|
|
|
self.mutex.acquire()
|
|
try:
|
|
self.ts = np.vstack((self.ts, tnew))
|
|
self.xs = np.vstack((self.xs, xnew))
|
|
#self.ys.append(xnew[1])
|
|
#self.omegas.append(xnew[2])
|
|
finally:
|
|
self.mutex.release()
|
|
# for r in self.robots:
|
|
# if r.euler is not None:
|
|
# if self.alpha_0 is not None:
|
|
# self.alphas.append(r.euler[2]-self.alpha_0)
|
|
# else:
|
|
# self.alpha_0 = r.euler[2]
|
|
# self.alphas.append(0.0)
|
|
# if r.pos is not None:
|
|
# if self.pos_0 is not None:
|
|
# self.possx.append(r.pos[0] - self.pos_0[0])
|
|
# self.possy.append(r.pos[1] - self.pos_0[1])
|
|
# else:
|
|
# self.pos_0 = r.pos[0:2]
|
|
# self.possx.append(0.0)
|
|
# self.possy.append(0.0)
|
|
|
|
#print("(t,x,u) = ({},{},{})".format(tnew,xnew,[self.u1, self.u2]))
|
|
#time.sleep(0.1)
|
|
|
|
|
|
elif keyboard_control_speed_test:
|
|
events = pygame.event.get()
|
|
for event in events:
|
|
if event.type == pygame.KEYDOWN:
|
|
if event.key == pygame.K_LEFT:
|
|
self.speed = self.speed / np.sqrt(np.sqrt(np.sqrt(10.0)))
|
|
elif event.key == pygame.K_RIGHT:
|
|
self.speed = self.speed * np.sqrt(np.sqrt(np.sqrt(10.0)))
|
|
elif event.key == pygame.K_UP:
|
|
u1 = self.speed
|
|
u2 = -self.speed
|
|
elif event.key == pygame.K_DOWN:
|
|
u1 = 0.0
|
|
u2 = 0.0
|
|
print("speed = {}".format(self.speed))
|
|
self.rc_socket.send('({},{})\n'.format(u1, u2))
|
|
|
|
elif pid:
|
|
events = pygame.event.get()
|
|
for event in events:
|
|
if event.type == pygame.KEYDOWN:
|
|
if event.key == pygame.K_LEFT:
|
|
self.ii = self.ii / np.sqrt(np.sqrt(np.sqrt(10.0)))
|
|
print("ii = {}".format(self.pp))
|
|
elif event.key == pygame.K_RIGHT:
|
|
self.ii = self.ii * np.sqrt(np.sqrt(np.sqrt(10.0)))
|
|
print("ii = {}".format(self.pp))
|
|
elif event.key == pygame.K_UP:
|
|
self.controlling = True
|
|
elif event.key == pygame.K_DOWN:
|
|
self.controlling = False
|
|
self.rc_socket.send('({},{})\n'.format(0, 0))
|
|
|
|
dt = 0.1
|
|
|
|
#i = 0.0 # 0.001
|
|
if self.controlling:
|
|
# test: turn robot such that angle is zero
|
|
for r in self.robots:
|
|
if r.euler is not None:
|
|
self.k = self.k + 1
|
|
|
|
alpha = r.euler[2]
|
|
self.alphas.append(alpha)
|
|
e = alpha - 0
|
|
p = self.pp * e
|
|
self.inc += e * dt
|
|
d = 0.0
|
|
|
|
u1 = p + self.ii * self.inc + d
|
|
u2 = - p - self.ii * self.inc - d
|
|
print("alpha = {}, u = ({}, {})".format(alpha, u1, u2))
|
|
self.rc_socket.send('({},{})\n'.format(u1, u2))
|
|
time.sleep(dt)
|
|
# elif self.k == kmax:
|
|
# u1 = u2 = 0.0
|
|
# self.rc_socket.send('({},{})\n'.format(u1, u2))
|
|
# self.k = self.k + 1
|
|
#
|
|
# plt.plot(np.array(self.alphas))
|
|
# plt.show()
|
|
pass
|
|
|
|
def calibration_sequence(self):
|
|
speed = 1.0
|
|
u1 = speed
|
|
u2 = speed
|
|
self.rc_socket.send('({},{})\n'.format(u1, u2))
|
|
time.sleep(4.0)
|
|
u1 = u2 = 0
|
|
self.rc_socket.send('({},{})\n'.format(u1, u2))
|
|
self.rc_socket.send('\n')
|
|
|
|
# test:
|
|
# -> 1.6 m in 4 seconds
|
|
# angular velocity: angle/second
|
|
# 1.6 / (2 * pi * 0.03)
|
|
# l = 1.6
|
|
# r = 0.03
|
|
# t = 4.0
|
|
# -> number of rotations n = l / (2 * pi * r)
|
|
# -> angular velocity = 2 * pi * n / t = l / (r * t)
|
|
# result: maximum angular velocity: omega_max = 13.32 rad/sec
|
|
|
|
|
|
def main(args):
|
|
rospy.init_node('controller_node', anonymous=True)
|
|
|
|
rc = RemoteController()
|
|
|
|
pygame.init()
|
|
pygame.display.set_mode((640, 480))
|
|
|
|
#p = multiprocessing.Process(target=rc.show_display)
|
|
threading.Thread(target=rc.show_display).start()
|
|
#p.start()
|
|
plt.ion()
|
|
plt.pause(0.01)
|
|
#p.join()
|
|
pass
|
|
|
|
#rc.show_display()
|
|
#rc.calibration_sequence()
|
|
#game.loop()
|
|
|
|
# try:
|
|
# rospy.spin()
|
|
# except KeyboardInterrupt:
|
|
# print("Shutting down")
|
|
# cv2.destroyAllWindows()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main(sys.argv) |