455 lines
20 KiB
Python
455 lines
20 KiB
Python
import pyrealsense2 as rs
|
|
import numpy as np
|
|
import cv2
|
|
import os
|
|
import time
|
|
import math
|
|
|
|
from shapely.geometry import LineString
|
|
from queue import Queue
|
|
|
|
import aruco
|
|
|
|
class ArucoEstimator:
|
|
corner_marker_ids = {
|
|
'a': 0,
|
|
'b': 1,
|
|
'c': 2,
|
|
'd': 3
|
|
}
|
|
|
|
corner_estimates = {
|
|
'a': {'pixel_coordinate': None, 'x': None, 'y': None, 'n_estimates': 0},
|
|
'b': {'pixel_coordinate': None, 'x': None, 'y': None, 'n_estimates': 0},
|
|
'c': {'pixel_coordinate': None, 'x': None, 'y': None, 'n_estimates': 0},
|
|
'd': {'pixel_coordinate': None, 'x': None, 'y': None, 'n_estimates': 0},
|
|
}
|
|
|
|
def __init__(self, robot_marker_ids=None, use_realsense=True, grid_columns=8, grid_rows=8):
|
|
self.grid_columns = grid_columns
|
|
self.grid_rows = grid_rows
|
|
|
|
if robot_marker_ids is None:
|
|
robot_marker_ids = []
|
|
self.robot_marker_ids = robot_marker_ids
|
|
self.robot_marker_estimates = dict([(marker_id, {'t': None, 'x': None, 'y': None, 'angle': None})
|
|
for marker_id in self.robot_marker_ids])
|
|
|
|
self.draw_grid = False
|
|
|
|
self.event_queue = Queue()
|
|
|
|
if use_realsense: # check if realsense camera is connected
|
|
# Configure depth and color streams
|
|
self.pipeline = rs.pipeline()
|
|
config = rs.config()
|
|
#config.enable_stream(rs.stream.color, 1920, 1080, rs.format.bgr8, 30)
|
|
config.enable_stream(rs.stream.color, 1280, 720, rs.format.bgr8, 30)
|
|
|
|
# Start streaming
|
|
self.pipeline.start(config)
|
|
|
|
# disable auto exposure
|
|
color_sensor = self.pipeline.get_active_profile().get_device().query_sensors()[1]
|
|
color_sensor.set_option(rs.option.enable_auto_exposure, False)
|
|
|
|
camera_intrinsics = self.pipeline.get_active_profile().get_stream(
|
|
rs.stream.color).as_video_stream_profile().get_intrinsics()
|
|
self.camera_matrix = np.zeros((3, 3))
|
|
self.camera_matrix[0][0] = camera_intrinsics.fx
|
|
self.camera_matrix[1][1] = camera_intrinsics.fy
|
|
self.camera_matrix[0][2] = camera_intrinsics.ppx
|
|
self.camera_matrix[1][2] = camera_intrinsics.ppy
|
|
self.dist_coeffs = np.array(camera_intrinsics.coeffs)
|
|
# more info: https://dev.intelrealsense.com/docs/projection-in-intel-realsense-sdk-20
|
|
else:
|
|
# use other camera
|
|
self.cv_camera = cv2.VideoCapture(0)
|
|
self.pipeline = None
|
|
|
|
# create detector and get parameters
|
|
self.detector = aruco.MarkerDetector()
|
|
# self.detector.setDictionary('ARUCO_MIP_36h12')
|
|
#self.detector.setDictionary('ARUCO_MIP_16h3')
|
|
# self.detector.setDictionary('ARUCO')
|
|
#self.detector.setDetectionMode(aruco.DM_NORMAL, 0.05)
|
|
self.detector.setDetectionMode(aruco.DM_VIDEO_FAST, 0.05)
|
|
|
|
self.detector_params = self.detector.getParameters()
|
|
|
|
# print detector parameters
|
|
print("detector params:")
|
|
for val in dir(self.detector_params):
|
|
if not val.startswith("__"):
|
|
print("\t{} : {}".format(val, self.detector_params.__getattribute__(val)))
|
|
|
|
self.camparam = aruco.CameraParameters()
|
|
if use_realsense:
|
|
self.camparam.readFromXMLFile(os.path.join(os.path.dirname(__file__), "realsense.yml"))
|
|
else:
|
|
self.camparam.readFromXMLFile(os.path.join(os.path.dirname(__file__), "dfk72_6mm_param2.yml"))
|
|
|
|
self.drag_line_end = None
|
|
self.drag_line_start = None
|
|
self.previous_click = None
|
|
|
|
def compute_clicked_position(self, px, py):
|
|
if self.all_corners_detected():
|
|
# inter/extrapolate from clicked point to marker position
|
|
px1 = self.corner_estimates['a']['pixel_coordinate'][0]
|
|
px3 = self.corner_estimates['c']['pixel_coordinate'][0]
|
|
py1 = self.corner_estimates['a']['pixel_coordinate'][1]
|
|
py3 = self.corner_estimates['c']['pixel_coordinate'][1]
|
|
|
|
x1 = self.corner_estimates['a']['x']
|
|
x3 = self.corner_estimates['c']['x']
|
|
y1 = self.corner_estimates['a']['y']
|
|
y3 = self.corner_estimates['c']['y']
|
|
|
|
alpha = (px - px1) / (px3 - px1)
|
|
beta = (py - py1) / (py3 - py1)
|
|
|
|
print(f"alpha = {alpha}, beta = {beta}")
|
|
|
|
target_x = x1 + alpha * (x3 - x1)
|
|
target_y = y1 + beta * (y3 - y1)
|
|
target = np.array([target_x, target_y])
|
|
|
|
#print(f"target = ({target_x},{target_y})")
|
|
else:
|
|
print("not all markers have been detected!")
|
|
target = np.array([px, -py])
|
|
return target
|
|
|
|
def mouse_callback(self, event, px, py, flags, param):
|
|
"""
|
|
This function is called for each mouse event inside the opencv window.
|
|
If there are reference markers available we compute the real world position corresponding to the clicked
|
|
position and put it in an event queue.
|
|
:param event: type of event (mouse movement, left click, right click, etc.)
|
|
:param px: x-position of event
|
|
:param py: y-position of event
|
|
"""
|
|
target = None
|
|
|
|
if event == cv2.EVENT_LBUTTONDOWN:
|
|
self.drag_line_start = (px, py)
|
|
elif event == cv2.EVENT_LBUTTONUP:
|
|
self.drag_line_end = (px, py)
|
|
target_pos = self.compute_clicked_position(self.drag_line_start[0], self.drag_line_start[1])
|
|
if self.drag_line_start != self.drag_line_end:
|
|
# compute target angle for clicked position
|
|
facing_pos = self.compute_clicked_position(px, py)
|
|
v = facing_pos - target_pos
|
|
target_angle = math.atan2(v[1], v[0])
|
|
else:
|
|
# determine angle from previously clicked pos (= self.drag_line_end)
|
|
if self.previous_click is not None:
|
|
previous_pos = self.compute_clicked_position(self.previous_click[0], self.previous_click[1])
|
|
v = target_pos - previous_pos
|
|
target_angle = math.atan2(v[1], v[0])
|
|
else:
|
|
target_angle = 0.0
|
|
|
|
target = np.array([target_pos[0], target_pos[1], target_angle])
|
|
print(target)
|
|
self.previous_click = (px, py)
|
|
self.event_queue.put(('click', {'x': target[0], 'y': target[1], 'angle': target[2]}))
|
|
self.drag_line_start = None
|
|
elif event == cv2.EVENT_MOUSEMOVE:
|
|
if self.drag_line_start is not None:
|
|
self.drag_line_end = (px, py)
|
|
|
|
def run_tracking(self, draw_markers=True, draw_marker_coordinate_system=False, invert_grayscale=False):
|
|
"""
|
|
Run the marker tracking in a loop
|
|
"""
|
|
cv2.namedWindow('RoboRally', cv2.WINDOW_AUTOSIZE)
|
|
cv2.setMouseCallback('RoboRally', self.mouse_callback)
|
|
|
|
fps_display_rate = 1 # displays the frame rate every 1 second
|
|
fps_counter = 0
|
|
start_time = time.time()
|
|
try:
|
|
running = True
|
|
while running:
|
|
if self.pipeline:
|
|
frames = self.pipeline.wait_for_frames()
|
|
color_frame = frames.get_color_frame()
|
|
if not color_frame:
|
|
continue
|
|
# Convert images to numpy arrays
|
|
color_image = np.asanyarray(color_frame.get_data())
|
|
else:
|
|
# Capture frame-by-frame
|
|
ret, color_image = self.cv_camera.read()
|
|
t_image = time.time()
|
|
|
|
gray = cv2.cvtColor(color_image, cv2.COLOR_BGR2GRAY)
|
|
if invert_grayscale:
|
|
cv2.bitwise_not(gray, gray)
|
|
|
|
# run aruco marker detection
|
|
detected_markers = self.detector.detect(gray)
|
|
|
|
# extract data for detected markers
|
|
detected_marker_data = {}
|
|
for marker in detected_markers:
|
|
if marker.id >= 0:
|
|
detected_marker_data[marker.id] = {'marker_center': marker.getCenter()}
|
|
|
|
if marker.id in self.corner_marker_ids.values():
|
|
marker.calculateExtrinsics(0.075, self.camparam)
|
|
else:
|
|
marker.calculateExtrinsics(0.07, self.camparam)
|
|
detected_marker_data[marker.id]['Rvec'] = marker.Rvec
|
|
detected_marker_data[marker.id]['Tvec'] = marker.Tvec
|
|
|
|
if draw_markers:
|
|
marker.draw(color_image, np.array([255, 255, 255]), 2, True)
|
|
|
|
if draw_marker_coordinate_system:
|
|
aruco.CvDrawingUtils.draw3dAxis(color_image, self.camparam, marker.Rvec, marker.Tvec, .1)
|
|
|
|
# store data
|
|
for marker_id, data in detected_marker_data.items():
|
|
self.update_estimate(marker_id, data['marker_center'], data['Rvec'], data['Tvec'], t_image)
|
|
|
|
# draw grid
|
|
if self.draw_grid:
|
|
color_image = self.draw_grid_lines(color_image, detected_marker_data)
|
|
color_image = self.draw_robot_pos(color_image, detected_marker_data)
|
|
|
|
# draw drag
|
|
if self.drag_line_start is not None and self.drag_line_end is not None:
|
|
color_image = cv2.line(color_image, self.drag_line_start, self.drag_line_end, color=(0, 0, 255), thickness=2)
|
|
|
|
# compute frame rate
|
|
fps_counter += 1
|
|
delta_t = time.time() - start_time
|
|
if delta_t > fps_display_rate:
|
|
fps_counter = 0
|
|
start_time = time.time()
|
|
color_image = cv2.putText(color_image, f"fps = {(fps_counter / delta_t):.2f}", (10, 25), cv2.FONT_HERSHEY_PLAIN, 2,
|
|
(0, 255, 255),
|
|
thickness=2)
|
|
|
|
# Show images
|
|
cv2.imshow('RoboRally', color_image)
|
|
key = cv2.waitKey(1)
|
|
|
|
if key > 0:
|
|
self.event_queue.put(('key', key))
|
|
if key == ord('g'):
|
|
self.draw_grid = not self.draw_grid
|
|
if key == ord('q'):
|
|
running = False
|
|
if key == ord('x'):
|
|
color_sensor = self.pipeline.get_active_profile().get_device().query_sensors()[1]
|
|
if color_sensor.get_option(rs.option.enable_auto_exposure) == 1.0:
|
|
color_sensor.set_option(rs.option.enable_auto_exposure, False)
|
|
print("auto exposure OFF")
|
|
else:
|
|
color_sensor.set_option(rs.option.enable_auto_exposure, True)
|
|
print("auto exposure ON")
|
|
if key == ord('i'):
|
|
invert_grayscale = not invert_grayscale
|
|
finally:
|
|
cv2.destroyAllWindows()
|
|
if self.pipeline is not None:
|
|
# Stop streaming
|
|
self.pipeline.stop()
|
|
|
|
def update_estimate(self, marker_id, pixel_coord_center, rvec, tvec, t_image):
|
|
# update the marker estimate with new data
|
|
if marker_id in self.corner_marker_ids.values():
|
|
# for corner markers we compute the mean of all measurements s.t. the position stabilizes over time
|
|
# (we assume the markers do not move)
|
|
|
|
# get corresponding corner to the detected marker
|
|
corner = next(filter(lambda key: self.corner_marker_ids[key] == marker_id, self.corner_marker_ids.keys()))
|
|
old_estimate_x = self.corner_estimates[corner]['x']
|
|
old_estimate_y = self.corner_estimates[corner]['y']
|
|
n_estimates = self.corner_estimates[corner]['n_estimates']
|
|
|
|
x = tvec[0][0]
|
|
y = -tvec[1][0] # flip y coordinate
|
|
if not any([old_estimate_x is None, old_estimate_y is None]):
|
|
new_estimate_x = (n_estimates * old_estimate_x + x) / (n_estimates + 1) # weighted update
|
|
new_estimate_y = (n_estimates * old_estimate_y + y) / (n_estimates + 1)
|
|
else:
|
|
new_estimate_x = x # first estimate
|
|
new_estimate_y = y
|
|
self.corner_estimates[corner]['t'] = t_image
|
|
self.corner_estimates[corner]['x'] = new_estimate_x
|
|
self.corner_estimates[corner]['y'] = new_estimate_y
|
|
self.corner_estimates[corner]['n_estimates'] = n_estimates + 1
|
|
self.corner_estimates[corner]['pixel_coordinate'] = pixel_coord_center
|
|
|
|
elif marker_id in self.robot_marker_ids:
|
|
# for robot markers we extract x and y position as well as the angle
|
|
# here we could also implement a filter
|
|
x = tvec[0][0]
|
|
y = -tvec[1][0] # flip y coordinate
|
|
|
|
# compute angle
|
|
rot_mat, _ = cv2.Rodrigues(rvec)
|
|
pose_mat = cv2.hconcat((rot_mat, tvec))
|
|
_, _, _, _, _, _, euler_angles = cv2.decomposeProjectionMatrix(pose_mat)
|
|
angle = -euler_angles[2][0] * np.pi / 180.0
|
|
|
|
self.robot_marker_estimates[marker_id] = {'t': float(t_image), 'x': float(x), 'y': float(y), 'angle': float(angle)}
|
|
|
|
def all_corners_detected(self):
|
|
# checks if all corner markers have been detected at least once
|
|
return not any([estimate['n_estimates'] == 0 for estimate in self.corner_estimates.values()])
|
|
|
|
def all_robots_detected(self):
|
|
# checks if all robot markers have been detected at least once
|
|
return not any([estimate['t'] is None for estimate in self.robot_marker_estimates.values()])
|
|
|
|
def get_pos_from_grid_point(self, x, y, orientation=None):
|
|
"""
|
|
returns the position for the given grid point based on the current corner estimates
|
|
:param x: x position on the grid ( 0 &le x < number of grid columns)
|
|
:param y: y position on the grid ( 0 &le x < number of grid rows)
|
|
:param orientation: (optional) orientation in the given grid cell (one of ^, >, v, < )
|
|
:return: numpy array with corresponding real world x- and y-position
|
|
if orientation was specified the array also contains the matching angle for the orientation
|
|
"""
|
|
assert 0 <= x < self.grid_columns
|
|
assert 0 <= y < self.grid_rows
|
|
assert self.all_corners_detected()
|
|
|
|
# compute column line
|
|
a = np.array([self.corner_estimates['a']['x'], self.corner_estimates['a']['y']])
|
|
b = np.array([self.corner_estimates['b']['x'], self.corner_estimates['b']['y']])
|
|
c = np.array([self.corner_estimates['c']['x'], self.corner_estimates['c']['y']])
|
|
d = np.array([self.corner_estimates['d']['x'], self.corner_estimates['d']['y']])
|
|
x_frac = (x + 0.5) / self.grid_columns
|
|
y_frac = (y + 0.5) / self.grid_rows
|
|
|
|
vab = b - a
|
|
vdc = c - d
|
|
column_line_top = a + x_frac * vab
|
|
column_line_bottom = d + x_frac * vdc
|
|
|
|
vad = d - a
|
|
vbc = c - b
|
|
row_line_top = a + y_frac * vad
|
|
row_line_bottom = b + y_frac * vbc
|
|
|
|
column_line = LineString([column_line_top, column_line_bottom])
|
|
row_line = LineString([row_line_top, row_line_bottom])
|
|
|
|
int_pt = column_line.intersection(row_line)
|
|
point_of_intersection = np.array([int_pt.x, int_pt.y])
|
|
|
|
if orientation is not None:
|
|
# compute angle corresponding to the orientation w.r.t. the grid
|
|
# TODO: test this code
|
|
angle_ab = np.arctan2(vab[1], vab[0])
|
|
angle_dc = np.arctan2(vdc[1], vdc[0])
|
|
|
|
angle_ad = np.arctan2(vad[1], vad[0])
|
|
angle_bc = np.arctan2(vbc[1], vbc[0])
|
|
|
|
angle = 0.0
|
|
if orientation == '>':
|
|
angle = y_frac * angle_ab + (1 - y_frac) * angle_dc
|
|
elif orientation == '<':
|
|
angle = y_frac * angle_ab + (1 - y_frac) * angle_dc + np.pi
|
|
elif orientation == 'v':
|
|
angle = x_frac * angle_ad + (1 - x_frac) * angle_bc
|
|
elif orientation == '^':
|
|
angle = x_frac * angle_ad + (1 - x_frac) * angle_bc + np.pi
|
|
|
|
return np.array((point_of_intersection[0], point_of_intersection[1], angle))
|
|
else:
|
|
return point_of_intersection
|
|
|
|
def get_grid_point_from_pos(self):
|
|
# TODO return the nearest grid point for the given position estimate
|
|
pass
|
|
|
|
def print_corner_estimates(self):
|
|
for key, value in self.corner_estimates.items():
|
|
if value['n_estimates'] != 0:
|
|
print(f"corner marker {key} at pos ({value['x']},{value['y']})")
|
|
|
|
def draw_corner_line(self, frame, corner_1, corner_2):
|
|
# draws a line between the given markers onto the given frame
|
|
corner_1_center = self.corner_estimates[corner_1]['pixel_coordinate']
|
|
corner_2_center = self.corner_estimates[corner_2]['pixel_coordinate']
|
|
if corner_1_center is not None and corner_2_center is not None:
|
|
frame = cv2.line(frame, tuple(corner_1_center), tuple(corner_2_center), color=(0, 0, 255), thickness=2)
|
|
return frame
|
|
|
|
def draw_grid_lines(self, frame, detected_marker_data):
|
|
# draws a grid onto the given frame
|
|
frame = self.draw_corner_line(frame, 'a', 'b')
|
|
frame = self.draw_corner_line(frame, 'b', 'c')
|
|
frame = self.draw_corner_line(frame, 'c', 'd')
|
|
frame = self.draw_corner_line(frame, 'd', 'a')
|
|
|
|
if not any([estimate['pixel_coordinate'] is None for estimate in self.corner_estimates.values()]):
|
|
# compute outlines of board
|
|
a = self.corner_estimates['a']['pixel_coordinate']
|
|
b = self.corner_estimates['b']['pixel_coordinate']
|
|
c = self.corner_estimates['c']['pixel_coordinate']
|
|
d = self.corner_estimates['d']['pixel_coordinate']
|
|
|
|
# draw vertical lines
|
|
vab = b - a
|
|
vdc = c - d
|
|
for x in range(1, self.grid_columns):
|
|
column_line_top = a + x / self.grid_columns * vab
|
|
column_line_bottom = d + x / self.grid_columns * vdc
|
|
frame = cv2.line(frame, tuple(column_line_top), tuple(column_line_bottom), color=(0, 255, 0),
|
|
thickness=1)
|
|
|
|
# draw horizontal lines
|
|
vad = d - a
|
|
vbc = c - b
|
|
for y in range(1, self.grid_rows):
|
|
row_line_top = a + y / self.grid_rows * vad
|
|
row_line_bottom = b + y / self.grid_rows * vbc
|
|
frame = cv2.line(frame, tuple(row_line_top), tuple(row_line_bottom), color=(0, 255, 0),
|
|
thickness=1)
|
|
|
|
return frame
|
|
|
|
def get_robot_state_estimate(self, marker_id):
|
|
if marker_id in self.robot_marker_estimates:
|
|
if self.robot_marker_estimates[marker_id]['t'] is not None:
|
|
return np.array([self.robot_marker_estimates[marker_id]['x'],
|
|
self.robot_marker_estimates[marker_id]['y'],
|
|
self.robot_marker_estimates[marker_id]['angle']])
|
|
else:
|
|
print(f"error: no estimate available for robot {marker_id}")
|
|
return None
|
|
else:
|
|
print(f"error: invalid robot id {marker_id}")
|
|
return None
|
|
|
|
def draw_robot_pos(self, frame, detected_marker_data):
|
|
# draws information about the robot positions onto the given frame
|
|
robot_corners_pixel_coords = {}
|
|
for marker_id, estimate in self.robot_marker_estimates.items():
|
|
if marker_id in detected_marker_data.keys():
|
|
robot_corners_pixel_coords[marker_id] = tuple(detected_marker_data[marker_id]['marker_center'])
|
|
|
|
for marker_id, coord in robot_corners_pixel_coords.items():
|
|
x = self.robot_marker_estimates[marker_id]['x']
|
|
y = self.robot_marker_estimates[marker_id]['y']
|
|
angle = self.robot_marker_estimates[marker_id]['angle']
|
|
#frame = cv2.putText(frame, "pos = ({:5.3f}, {:5.3f}), ang = {:5.3f}".format(x, y, angle), coord,
|
|
# cv2.FONT_HERSHEY_SIMPLEX, 0.50, (0, 255, 0))
|
|
frame = cv2.putText(frame, f"{marker_id}", coord, cv2.FONT_HERSHEY_PLAIN, 2, (0, 255, 255), thickness=4)
|
|
return frame
|
|
|
|
|
|
if __name__ == "__main__":
|
|
estimator = ArucoEstimator(use_realsense=True, robot_marker_ids=[11, 12, 13, 14])
|
|
estimator.run_tracking(draw_markers=True, invert_grayscale=True)
|