implemented pushing logic

master
Simon Pirkelmann 2020-09-20 18:04:35 +02:00
parent 2d6180ad74
commit ca5c0d7083
1 changed files with 118 additions and 33 deletions

View File

@ -1,7 +1,7 @@
import random
import sys
random.seed(0)
class Card:
possible_moves = ['forward', 'forward x2', 'forward x3', 'backward', 'turn left', 'turn right', 'turn around']
card_counter = 0
@ -70,18 +70,57 @@ class Robot:
self.board = board
# mark the tile on the board as occupied
self.board[(x,y)].occupier = self
def get_accessed_tiles(self, count):
# create a list of all tiles the robot would enter if it drives <count> steps forward
tiles = []
if self.orientation == '>':
tiles = [self.board.get((self.x + i, self.y)) for i in range(1, count + 1)]
elif self.orientation == '<':
tiles = [self.board.get((self.x - i, self.y)) for i in range(1, count + 1)]
elif self.orientation == '^':
tiles = [self.board.get((self.x, self.y - i)) for i in range(1, count + 1)]
elif self.orientation == 'v':
tiles = [self.board.get((self.x, self.y + i)) for i in range(1, count + 1)]
current_tile = self.board[(self.x, self.y)]
for i in range(1, count + 1):
current_tile = self.board.get(current_tile.get_neighbor_coordinates(self.orientation))
tiles.append(current_tile)
return tiles
def is_pushable(self, direction):
# check if the robot can be pushed in the given direction
# this is the case if there is a non-blocking tile next to the robot or if there is another robot that is pushable
robot_tile = self.board[(self.x, self.y)]
neighbor_tile = self.board.get(robot_tile.get_neighbor_coordinates(direction))
if neighbor_tile is None: # neighbor tile could not be found -> robot would be pushed out of the board
return False
else:
if neighbor_tile.is_empty():
return True
elif neighbor_tile.modifier == '#': # if there's a wall on the neighbor tile the robot cannot be pushed there
return False
else:
# this means there's another robot on the neighbor tile -> check if it can be pushed away
return neighbor_tile.occupant.is_pushable(direction)
def has_opposite_orientation(self, direction):
opposites = [('^', 'v'), ('>', '<'), ('v', '^'), ('<', '>')]
return (self.orientation, direction) in opposites
def get_turn_direction(self, target_orienation):
# get the direction to turn to in order to face in the same direction as the given orientation
directions = {
('^', '>'): 'turn right',
('^', 'v'): 'turn around',
('^', '<'): 'turn left',
('>', 'v'): 'turn right',
('>', '<'): 'turn around',
('>', '^'): 'turn left',
('v', '<'): 'turn right',
('v', '^'): 'turn around',
('v', '>'): 'turn left',
('<', '^'): 'turn right',
('<', '>'): 'turn around',
('<', 'v'): 'turn left',
}
return directions[(self.orientation, target_orienation)]
def move(self, type):
pass
@ -100,8 +139,23 @@ class Tile:
self.x = x
self.y = y
def get_neighbor_coordinates(self, direction):
# get the coordinates of the neighboring tile in the given direction
if direction == '^':
return (self.x, self.y - 1)
elif direction == '>':
return (self.x + 1, self.y)
elif direction == 'v':
return (self.x, self.y + 1)
elif direction == '<':
return (self.x - 1, self.y)
else:
print("error: unknown direction")
sys.exit(1)
def is_empty(self):
return self.occupant is None
# check if the tile is non-empty and does not contain a wall
return self.occupant is None and self.modifier != '#'
def __str__(self):
if self.is_empty():
@ -119,16 +173,20 @@ class Board:
def __init__(self):
self.board = {}
for x in range(Board.x_dims):
for y in range(Board.y_dims):
if x == 0 and (y >= 1) and (y <= 4):
for x in range(Board.x_dims + 2):
for y in range(Board.y_dims + 2):
if (x == 0) or (x == Board.x_dims + 1) or (y == 0) or (y == Board.y_dims + 1):
# place walls around the board
self.board[(x, y)] = Tile(x, y, '#')
elif x == 1 and (y >= 1) and (y <= 4):
self.board[(x, y)] = Tile(x, y, 'v')
else:
self.board[(x, y)] = Tile(x, y)
self.board[(x,y)] = Tile(x,y)
self.robots = {}
self.robots[0] = Robot(0, 0, '<', 0, self.board)
self.robots[1] = Robot(2, 0, '^', 1, self.board)
self.robots[0] = Robot(3, 1, '<', 0, self.board)
self.robots[1] = Robot(1, 1, 'v', 1, self.board)
def handle_single_action(self, action, robot):
if 'forward' in action: # driving forward
@ -141,19 +199,45 @@ class Board:
accessed_tiles = robot.get_accessed_tiles(move_count)
for tile in accessed_tiles:
if tile is None: # robot tries to access a tile outside of the board
# TODO take robot out of the game
if tile.modifier == '#': # robot hits a wall -> stop the robot
pass
elif tile.modifier == 'X': # robot drives into a pit -> take damage
pass
elif any([(tile.x, tile.y) == (r.x, r.y) for r in
self.robots]): # robots hits a tile occupied by another robot
# TODO move "pushed" robot by one tile:
# -> get current orientation
# -> turn the "pushed" robot to face in the same direction as the "pushing" robot
# -> move the "pushed" robot one step forward (while handling the move action of the robot recursively and pushing other robots as required)
# -> turn the "pushed" robot back to the original orientation
pass
self.robots.values()]): # robots hits a tile occupied by another robot
pushed_robot = next(filter(lambda r: (tile.x, tile.y) == (r.x, r.y), self.robots.values()))
if pushed_robot.is_pushable(robot.orientation): # check if robot is pushable in the given direction
if pushed_robot.orientation == robot.orientation:
# the pushed robot can just drive forward
self.handle_single_action('forward', pushed_robot)
elif pushed_robot.has_opposite_orientation(robot.orientation):
# the pushed robot can drive backward
self.handle_single_action('backward', pushed_robot)
else:
# we first have to turn the pushed robot s.t. it faces in the same orientation as the
# pushing robot
turn_direction = pushed_robot.get_turn_direction(robot.orientation)
self.handle_single_action(turn_direction, pushed_robot)
# then the pushed robot drives one step forward
self.handle_single_action('forward', pushed_robot)
# afterwards we turn the robot back to the original orientation
if turn_direction == 'turn left':
turn_back_direction = 'turn right'
elif turn_direction == 'turn right':
turn_back_direction = 'turn left'
else:
print("error: invalid turn direction")
sys.exit(1)
self.handle_single_action(turn_back_direction, pushed_robot)
else: # robot is not pushable -> do not move
pass
else:
# now the tile should be empty so the robot can move into the tile
# TODO: possible problem: what happens when robot cannot be pushed out of the way (e.g. because it is
# blocked by a wall) -> check if robot is pushable beforehand
# -> register move action to process
pass
elif action == 'backward':
@ -183,26 +267,27 @@ class Board:
self.handle_single_action(action, robot)
# apply the actions caused by board elements at the end of the phase
pass
def __str__(self):
output = '#' * (Board.x_dims + 2) + '\n'
for y in range(Board.y_dims):
output += '#'
for x in range(Board.x_dims):
#output = '#' * (Board.x_dims + 2) + '\n'
output = ''
for y in range(Board.y_dims+2):
for x in range(Board.x_dims+2):
if any((r.x, r.y) == (x,y) for r in self.robots.values()):
r = list(filter(lambda r: (r.x,r.y) == (x,y), self.robots.values()))[0]
output += str(r.id)
else:
output += str(self.board[(x, y)])
output += '#\n'
output += '#' * (Board.x_dims + 2)
output += '\n'
#output += '#' * (Board.x_dims + 2)
return output
if __name__ == "__main__":
n = 5
player_1_cards = deck.draw_cards(3)
player_2_cards = deck.draw_cards(3)
player_1_cards = random.sample(list(filter(lambda c: 'forward' in c.action, deck.deck.values())), 3)
player_2_cards = random.sample(list(filter(lambda c: 'turn around' in c.action, deck.deck.values())), 3)
cards_1 = [(0, c) for c in player_1_cards]
cards_2 = [(1, c) for c in player_2_cards]