forked from Telos4/RoboRally
cleaned up code, removed old controllers
This commit is contained in:
parent
ac0ad6c45a
commit
9dfc06169f
|
@ -75,7 +75,7 @@ class RemoteController:
|
|||
for r in self.robots:
|
||||
self.robot_ids[r.id] = r
|
||||
|
||||
obst = [Obstacle(6, 0.2), Obstacle(5, 0.2), Obstacle(8, 0.2)]
|
||||
obst = [Obstacle(6, 0.175), Obstacle(5, 0.175), Obstacle(8, 0.175)]
|
||||
|
||||
self.obstacles = {}
|
||||
for r in obst:
|
||||
|
@ -111,21 +111,13 @@ class RemoteController:
|
|||
|
||||
self.mutex = threading.Lock()
|
||||
|
||||
# ROS subscriber for detected markers
|
||||
marker_sub = rospy.Subscriber("/marker_id_pos_angle", id_pos_angle, self.measurement_callback)
|
||||
|
||||
|
||||
# pid parameters
|
||||
self.k = 0
|
||||
self.ii = 0.1
|
||||
self.pp = 0.4
|
||||
|
||||
self.inc = 0.0
|
||||
|
||||
self.alphas = []
|
||||
|
||||
self.speed = 1.0
|
||||
self.controlling = False
|
||||
|
||||
# currently active control
|
||||
self.u1 = 0.0
|
||||
self.u2 = 0.0
|
||||
|
||||
|
@ -152,9 +144,15 @@ class RemoteController:
|
|||
|
||||
self.ols = OpenLoopSolver()
|
||||
self.ols.setup()
|
||||
self.dt = self.ols.T / self.ols.N
|
||||
|
||||
self.target = (0.0, 0.0, 0.0)
|
||||
|
||||
# integrator
|
||||
self.r = scipy.integrate.ode(f_ode)
|
||||
self.omega_max = 5.0
|
||||
|
||||
|
||||
def ani(self):
|
||||
self.ani = anim.FuncAnimation(self.fig, init_func=self.ani_init, func=self.ani_update, interval=10, blit=True)
|
||||
plt.ion()
|
||||
|
@ -213,7 +211,6 @@ class RemoteController:
|
|||
else:
|
||||
self.line_ol.set_data([],[])
|
||||
|
||||
|
||||
i = 0
|
||||
obst_keys = self.obstacles.keys()
|
||||
for s in self.circles:
|
||||
|
@ -230,16 +227,13 @@ class RemoteController:
|
|||
return self.line, self.line_sim, self.dirm, self.dirs, self.line_ol, self.circles[0], self.circles[1],self.circles[2],
|
||||
|
||||
def measurement_callback(self, data):
|
||||
#print("data = {}".format(data))
|
||||
# detect robots
|
||||
if data.id in self.robot_ids:
|
||||
r = self.robot_ids[data.id]
|
||||
|
||||
r.pos = (data.x, data.y) # only x and y component are important for us
|
||||
r.euler = data.angle
|
||||
|
||||
#print("r.pos = {}".format(r.pos))
|
||||
#print("r.angle = {}".format(r.euler))
|
||||
|
||||
# save measured position and angle for plotting
|
||||
measurement = np.array([r.pos[0], r.pos[1], r.euler])
|
||||
if self.tms_0 is None:
|
||||
|
@ -260,257 +254,89 @@ class RemoteController:
|
|||
finally:
|
||||
self.mutex.release()
|
||||
|
||||
# detect obstacles
|
||||
if data.id in self.obstacles.keys():
|
||||
obst = (data.x, data.y)
|
||||
self.obstacles[data.id].pos = obst
|
||||
|
||||
def controller(self):
|
||||
tgrid = None
|
||||
us1 = None
|
||||
us2 = None
|
||||
u1 = -0.0
|
||||
u2 = 0.0
|
||||
|
||||
r = scipy.integrate.ode(f_ode)
|
||||
|
||||
omega_max = 5.0
|
||||
|
||||
init_pos = None
|
||||
init_time = None
|
||||
final_pos = None
|
||||
final_time = None
|
||||
forward = True
|
||||
print("starting control")
|
||||
while True:
|
||||
|
||||
keyboard_control = False
|
||||
keyboard_control_speed_test = False
|
||||
pid = False
|
||||
open_loop_solve = True
|
||||
# open loop controller
|
||||
events = pygame.event.get()
|
||||
for event in events:
|
||||
if event.type == pygame.KEYDOWN:
|
||||
if event.key == pygame.K_UP:
|
||||
self.controlling = True
|
||||
self.t = time.time()
|
||||
elif event.key == pygame.K_DOWN:
|
||||
self.controlling = False
|
||||
if self.rc_socket:
|
||||
self.rc_socket.send('(0.0,0.0)\n')
|
||||
elif event.key == pygame.K_0:
|
||||
self.target = (0.0, 0.0, 0.0)
|
||||
elif event.key == pygame.K_1:
|
||||
self.target = (0.5,0.5, -np.pi/2.0)
|
||||
elif event.key == pygame.K_2:
|
||||
self.target = (0.5, -0.5, 0.0)
|
||||
elif event.key == pygame.K_3:
|
||||
self.target = (-0.5,-0.5, np.pi/2.0)
|
||||
elif event.key == pygame.K_4:
|
||||
self.target = (-0.5,0.5, 0.0)
|
||||
|
||||
if keyboard_control: # keyboard controller
|
||||
events = pygame.event.get()
|
||||
speed = 1.0
|
||||
for event in events:
|
||||
if event.type == pygame.KEYDOWN:
|
||||
if event.key == pygame.K_LEFT:
|
||||
self.u1 = -speed
|
||||
self.u2 = speed
|
||||
#print("turn left: ({},{})".format(u1, u2))
|
||||
elif event.key == pygame.K_RIGHT:
|
||||
self.u1 = speed
|
||||
self.u2 = -speed
|
||||
#print("turn right: ({},{})".format(u1, u2))
|
||||
elif event.key == pygame.K_UP:
|
||||
self.u1 = speed
|
||||
self.u2 = speed
|
||||
#print("forward: ({},{})".format(self.u1, self.u2))
|
||||
elif event.key == pygame.K_DOWN:
|
||||
self.u1 = -speed
|
||||
self.u2 = -speed
|
||||
#print("forward: ({},{})".format(u1, u2))
|
||||
self.rc_socket.send('({},{},{})\n'.format(0.1, self.u1, self.u2))
|
||||
elif event.type == pygame.KEYUP:
|
||||
self.u1 = 0
|
||||
self.u2 = 0
|
||||
#print("key released, resetting: ({},{})".format(u1, u2))
|
||||
self.rc_socket.send('({}, {},{})\n'.format(0.1, self.u1, self.u2))
|
||||
if self.controlling:
|
||||
x_pred = self.get_measurement_prediction()
|
||||
|
||||
tnew = time.time()
|
||||
dt = tnew - self.t
|
||||
r = scipy.integrate.ode(f_ode)
|
||||
r.set_f_params(np.array([self.u1 * omega_max, self.u2 * omega_max]))
|
||||
tmpc_start = time.time()
|
||||
|
||||
#print(self.x0)
|
||||
if self.x0 is None:
|
||||
if self.xm_0 is not None:
|
||||
self.x0 = self.xm_0
|
||||
self.xs = self.x0
|
||||
else:
|
||||
print("error: no measurement available to initialize simulation")
|
||||
x = self.x0
|
||||
r.set_initial_value(x, self.t)
|
||||
xnew = r.integrate(r.t + dt)
|
||||
# solve mpc open loop problem
|
||||
res = self.ols.solve(x_pred, self.target, self.obstacles)
|
||||
|
||||
self.t = tnew
|
||||
self.x0 = xnew
|
||||
us1 = res[0]
|
||||
us2 = res[1]
|
||||
|
||||
# save open loop trajectories for plotting
|
||||
self.mutex.acquire()
|
||||
try:
|
||||
self.ts = np.append(self.ts, tnew)
|
||||
self.xs = np.vstack((self.xs, xnew))
|
||||
self.ol_x = res[2]
|
||||
self.ol_y = res[3]
|
||||
finally:
|
||||
self.mutex.release()
|
||||
|
||||
tmpc_end = time.time()
|
||||
print("---------------- mpc solution took {} seconds".format(tmpc_end - tmpc_start))
|
||||
dt_mpc = time.time() - self.t
|
||||
if dt_mpc < self.dt: # wait until next control can be applied
|
||||
print("sleeping for {} seconds...".format(self.dt - dt_mpc))
|
||||
time.sleep(self.dt - dt_mpc)
|
||||
|
||||
elif keyboard_control_speed_test:
|
||||
events = pygame.event.get()
|
||||
for event in events:
|
||||
if event.type == pygame.KEYDOWN:
|
||||
if event.key == pygame.K_1:
|
||||
self.controlling = True
|
||||
forward = True
|
||||
print("starting test")
|
||||
self.mutex.acquire()
|
||||
try:
|
||||
init_pos = copy.deepcopy(self.xms[-1])
|
||||
init_time = copy.deepcopy(self.tms[-1])
|
||||
finally:
|
||||
self.mutex.release()
|
||||
if event.key == pygame.K_2:
|
||||
self.controlling = True
|
||||
forward = False
|
||||
print("starting test")
|
||||
self.mutex.acquire()
|
||||
try:
|
||||
init_pos = copy.deepcopy(self.xms[-1])
|
||||
init_time = copy.deepcopy(self.tms[-1])
|
||||
finally:
|
||||
self.mutex.release()
|
||||
elif event.key == pygame.K_3:
|
||||
self.controlling = False
|
||||
print("stopping test")
|
||||
self.rc_socket.send('(0.1, 0.0,0.0)\n')
|
||||
# send controls to the robot
|
||||
for i in range(0, 1): # option to use multistep mpc if len(range) > 1
|
||||
u1 = us1[i]
|
||||
u2 = us2[i]
|
||||
if self.rc_socket:
|
||||
self.rc_socket.send('({},{})\n'.format(u1, u2))
|
||||
self.t = time.time() # save time the most recent control was applied
|
||||
|
||||
self.mutex.acquire()
|
||||
try:
|
||||
final_pos = copy.deepcopy(self.xms[-1])
|
||||
final_time = copy.deepcopy(self.tms[-1])
|
||||
finally:
|
||||
self.mutex.release()
|
||||
def get_measurement_prediction(self):
|
||||
# get measurement
|
||||
self.mutex.acquire()
|
||||
try:
|
||||
last_measurement = copy.deepcopy(self.xms[-1])
|
||||
last_time = copy.deepcopy(self.tms[-1])
|
||||
finally:
|
||||
self.mutex.release()
|
||||
|
||||
print("init_pos = {}".format(init_pos))
|
||||
print("final_pos = {}".format(final_pos))
|
||||
print("distance = {}".format(np.linalg.norm(init_pos[0:2]-final_pos[0:2])))
|
||||
print("dt = {}".format(final_time - init_time))
|
||||
# prediction of state at time the mpc will terminate
|
||||
self.r.set_f_params(np.array([self.u1 * self.omega_max, self.u2 * self.omega_max]))
|
||||
|
||||
d = np.linalg.norm(init_pos[0:2]-final_pos[0:2])
|
||||
t = final_time - init_time
|
||||
r = 0.03
|
||||
self.r.set_initial_value(last_measurement, last_time)
|
||||
|
||||
angular_velocity = d/r/t
|
||||
print("average angular velocity = {}".format(angular_velocity))
|
||||
x_pred = self.r.integrate(self.r.t + self.dt)
|
||||
|
||||
return x_pred
|
||||
|
||||
if self.controlling:
|
||||
if forward:
|
||||
self.rc_socket.send('(0.1, 1.0,1.0)\n')
|
||||
else:
|
||||
self.rc_socket.send('(0.1, -1.0,-1.0)\n')
|
||||
time.sleep(0.1)
|
||||
#print("speed = {}".format(self.speed))
|
||||
|
||||
|
||||
elif open_loop_solve:
|
||||
# open loop controller
|
||||
|
||||
events = pygame.event.get()
|
||||
for event in events:
|
||||
if event.type == pygame.KEYDOWN:
|
||||
if event.key == pygame.K_UP:
|
||||
self.controlling = True
|
||||
self.t = time.time()
|
||||
elif event.key == pygame.K_DOWN:
|
||||
self.controlling = False
|
||||
if self.rc_socket:
|
||||
self.rc_socket.send('(0.0,0.0)\n')
|
||||
elif event.key == pygame.K_0:
|
||||
self.target = (0.0, 0.0, 0.0)
|
||||
elif event.key == pygame.K_1:
|
||||
self.target = (0.5,0.5, -np.pi/2.0)
|
||||
elif event.key == pygame.K_2:
|
||||
self.target = (0.5, -0.5, 0.0)
|
||||
elif event.key == pygame.K_3:
|
||||
self.target = (-0.5,-0.5, np.pi/2.0)
|
||||
elif event.key == pygame.K_4:
|
||||
self.target = (-0.5,0.5, 0.0)
|
||||
if self.controlling:
|
||||
# get measurement
|
||||
self.mutex.acquire()
|
||||
try:
|
||||
last_measurement = copy.deepcopy(self.xms[-1])
|
||||
last_time = copy.deepcopy(self.tms[-1])
|
||||
finally:
|
||||
self.mutex.release()
|
||||
|
||||
#print("current measurement (t, x) = ({}, {})".format(last_time, last_measurement))
|
||||
#print("current control (u1, u2) = ({}, {})".format(u1, u2))
|
||||
|
||||
# prediction of state at time the mpc will terminate
|
||||
r.set_f_params(np.array([u1 * omega_max, u2 * omega_max]))
|
||||
|
||||
r.set_initial_value(last_measurement, last_time)
|
||||
dt = self.ols.T/self.ols.N
|
||||
#print("integrating for {} seconds".format((dt)))
|
||||
x_pred = r.integrate(r.t + (dt))
|
||||
|
||||
#print("predicted initial state x_pred = ({})".format(x_pred))
|
||||
|
||||
tmpc_start = time.time()
|
||||
|
||||
res = self.ols.solve(x_pred, self.target, self.obstacles)
|
||||
#tgrid = res[0]
|
||||
us1 = res[0]
|
||||
us2 = res[1]
|
||||
|
||||
self.mutex.acquire()
|
||||
try:
|
||||
self.ol_x = res[2]
|
||||
self.ol_y = res[3]
|
||||
finally:
|
||||
self.mutex.release()
|
||||
|
||||
# tt = 0
|
||||
# x = last_measurement
|
||||
# t_ol = np.array([tt])
|
||||
# x_ol = np.array([x])
|
||||
# # compute open loop prediction
|
||||
# for i in range(len(us1)):
|
||||
# r = scipy.integrate.ode(f_ode)
|
||||
# r.set_f_params(np.array([us1[i] * 13.32, us2[i] * 13.32]))
|
||||
# r.set_initial_value(x, tt)
|
||||
#
|
||||
# tt = tt + 0.1
|
||||
# x = r.integrate(tt)
|
||||
#
|
||||
# t_ol = np.vstack((t_ol, tt))
|
||||
# x_ol = np.vstack((x_ol, x))
|
||||
|
||||
#plt.figure(4)
|
||||
#plt.plot(x_ol[:,0], x_ol[:,1])
|
||||
|
||||
|
||||
#if event.key == pygame.K_DOWN:
|
||||
# if tgrid is not None:
|
||||
tmpc_end = time.time()
|
||||
print("---------------- mpc solution took {} seconds".format(tmpc_end - tmpc_start))
|
||||
dt_mpc = time.time() - self.t
|
||||
if dt_mpc < dt:
|
||||
print("sleeping for {} seconds...".format(dt - dt_mpc))
|
||||
time.sleep(dt - dt_mpc)
|
||||
|
||||
self.mutex.acquire()
|
||||
try:
|
||||
second_measurement = copy.deepcopy(self.xms[-1])
|
||||
second_time = copy.deepcopy(self.tms[-1])
|
||||
finally:
|
||||
self.mutex.release()
|
||||
|
||||
#print("(last_time, second_time, dt) = ({}, {}, {})".format(last_time, second_time, second_time - last_time))
|
||||
#print("mismatch between predicted state and measured state: {}\n\n".format(second_measurement - last_measurement))
|
||||
|
||||
for i in range(0, 1):
|
||||
u1 = us1[i]
|
||||
u2 = us2[i]
|
||||
#self.rc_socket.send('({},{},{})\n'.format(dt,u1, u2))
|
||||
if self.rc_socket:
|
||||
self.rc_socket.send('({},{})\n'.format(u1, u2))
|
||||
self.t = time.time()
|
||||
#time.sleep(0.2)
|
||||
#
|
||||
|
||||
|
||||
pass
|
||||
|
||||
def main(args):
|
||||
rospy.init_node('controller_node', anonymous=True)
|
||||
|
@ -523,6 +349,7 @@ def main(args):
|
|||
screenwidth = 640
|
||||
pygame.display.set_mode([screenwidth, screenheight])
|
||||
|
||||
#threading.Thread(target=rc.input_handling).start()
|
||||
threading.Thread(target=rc.controller).start()
|
||||
|
||||
rc.ani()
|
||||
|
|
Loading…
Reference in New Issue
Block a user