forked from Telos4/RoboRally
enabled backwards driving and adjusted parameters a bit
This commit is contained in:
parent
91cde26908
commit
a872232880
|
@ -10,8 +10,8 @@ class PIDController:
|
||||||
self.estimator = estimator
|
self.estimator = estimator
|
||||||
self.controlling = False
|
self.controlling = False
|
||||||
|
|
||||||
self.P_angle = 0.5 # PID parameters determined by Ziegler-Nichols. measured K_crit = 1.4, T_crit = 1.5
|
self.P_angle = 0.4 # PID parameters determined by Ziegler-Nichols. measured K_crit = 1.4, T_crit = 1.5
|
||||||
self.I_angle = 0.4
|
self.I_angle = 0.35
|
||||||
self.D_angle = 0.1
|
self.D_angle = 0.1
|
||||||
|
|
||||||
self.P_pos = 0.50
|
self.P_pos = 0.50
|
||||||
|
@ -206,51 +206,6 @@ class PIDController:
|
||||||
u2 = - u1
|
u2 = - u1
|
||||||
|
|
||||||
e_angle_old = e_angle
|
e_angle_old = e_angle
|
||||||
elif self.mode == 'position':
|
|
||||||
# we assume that we face straight to the target position
|
|
||||||
v = target_pos[0:2] - x_pred[0:2]
|
|
||||||
# check if robot faces in same direction as pos-target-vector
|
|
||||||
target_angle = math.atan2(v[1], v[0])
|
|
||||||
current_angle = x_pred[2]
|
|
||||||
|
|
||||||
angles_unwrapped = np.unwrap([current_angle, target_angle]) # unwrap angle to avoid jump in data
|
|
||||||
alpha = angles_unwrapped[0]
|
|
||||||
beta = angles_unwrapped[1]
|
|
||||||
|
|
||||||
epsilon = 0.3
|
|
||||||
|
|
||||||
|
|
||||||
if not (abs(alpha - beta) < epsilon or abs(alpha - beta + np.pi) < epsilon or abs(alpha - beta - np.pi) < epsilon):
|
|
||||||
print("switch to angle mode")
|
|
||||||
u1 = u2 = 0.0
|
|
||||||
robot.send_cmd(u1, u2)
|
|
||||||
self.mode = 'angle'
|
|
||||||
elif abs(alpha - beta) < epsilon:
|
|
||||||
# forward
|
|
||||||
e = np.linalg.norm(x_pred[0:2] - target_pos[0:2]) # compute euclidean distance to target
|
|
||||||
p = self.P * e
|
|
||||||
# i += self.I * dt * e # right Riemann sum
|
|
||||||
i += self.I * dt * (e + e_old) / 2.0 # trapezoidal rule
|
|
||||||
d = self.D * (e - e_old) / dt
|
|
||||||
|
|
||||||
u1 = p - i + d
|
|
||||||
u2 = u1
|
|
||||||
else:
|
|
||||||
# backward
|
|
||||||
e = np.linalg.norm(x_pred[0:2] - target_pos[0:2]) # compute euclidean distance to target
|
|
||||||
p = self.P * e
|
|
||||||
# i += self.I * dt * e # right Riemann sum
|
|
||||||
i += self.I * dt * (e + e_old) / 2.0 # trapezoidal rule
|
|
||||||
d = self.D * (e - e_old) / dt
|
|
||||||
|
|
||||||
u1 = -(p - i + d)
|
|
||||||
u2 = u1
|
|
||||||
|
|
||||||
e_old = e
|
|
||||||
#else:
|
|
||||||
# print("switching to angle mode")
|
|
||||||
# u1 = u2 = 0.0
|
|
||||||
# self.mode = 'angle'
|
|
||||||
|
|
||||||
elif self.mode == 'combined':
|
elif self.mode == 'combined':
|
||||||
# compute angle such that robot faces to target point
|
# compute angle such that robot faces to target point
|
||||||
|
@ -262,22 +217,42 @@ class PIDController:
|
||||||
e_angle = angles_unwrapped[0] - angles_unwrapped[1] # angle difference
|
e_angle = angles_unwrapped[0] - angles_unwrapped[1] # angle difference
|
||||||
e_pos = np.linalg.norm(v)
|
e_pos = np.linalg.norm(v)
|
||||||
|
|
||||||
p_angle = self.P_angle * e_angle
|
|
||||||
i_angle += self.I_angle * dt * (e_angle + e_angle_old) / 2.0 # trapezoidal rule
|
|
||||||
d_angle = self.D_angle * (e_angle - e_angle_old) / dt
|
|
||||||
|
|
||||||
p_pos = self.P_pos * e_pos
|
|
||||||
i_pos += self.I_pos * dt * (e_pos + e_pos_old) / 2.0 # trapezoidal rule
|
|
||||||
d_pos = self.D_pos * (e_pos - e_pos_old) / dt
|
|
||||||
|
|
||||||
u1 = p_angle + p_pos - i_angle - i_pos
|
|
||||||
u2 = - p_angle + p_pos + i_angle - i_pos
|
|
||||||
|
|
||||||
e_pos_old = e_pos
|
|
||||||
e_angle_old = e_angle
|
|
||||||
|
|
||||||
if e_pos < 0.05:
|
if e_pos < 0.05:
|
||||||
self.mode = 'angle'
|
self.mode = 'angle'
|
||||||
|
e_angle_old = 0
|
||||||
|
e_pos_old = 0
|
||||||
|
i_angle = 0
|
||||||
|
i_pos = 0
|
||||||
|
u1 = 0
|
||||||
|
u2 = 0
|
||||||
|
else:
|
||||||
|
forward = abs(e_angle) < np.pi/2.0
|
||||||
|
|
||||||
|
if not forward:
|
||||||
|
if e_angle > np.pi/2.0:
|
||||||
|
e_angle -= np.pi
|
||||||
|
else:
|
||||||
|
e_angle += np.pi
|
||||||
|
|
||||||
|
p_angle = self.P_angle * e_angle
|
||||||
|
i_angle += self.I_angle * dt * (e_angle + e_angle_old) / 2.0 # trapezoidal rule
|
||||||
|
d_angle = self.D_angle * (e_angle - e_angle_old) / dt
|
||||||
|
|
||||||
|
p_pos = self.P_pos * e_pos
|
||||||
|
i_pos += self.I_pos * dt * (e_pos + e_pos_old) / 2.0 # trapezoidal rule
|
||||||
|
d_pos = self.D_pos * (e_pos - e_pos_old) / dt
|
||||||
|
|
||||||
|
if forward:
|
||||||
|
print("forward")
|
||||||
|
u1 = p_angle + p_pos - i_angle - i_pos - d_angle - d_pos
|
||||||
|
u2 = - p_angle + p_pos + i_angle - i_pos + d_angle - d_pos
|
||||||
|
else:
|
||||||
|
print("backward")
|
||||||
|
u1 = p_angle - p_pos - i_angle + i_pos - d_angle + d_pos
|
||||||
|
u2 = - p_angle - p_pos + i_angle + i_pos + d_angle + d_pos
|
||||||
|
|
||||||
|
e_pos_old = e_pos
|
||||||
|
e_angle_old = e_angle
|
||||||
|
|
||||||
else:
|
else:
|
||||||
u1 = 0.0
|
u1 = 0.0
|
||||||
|
|
Loading…
Reference in New Issue
Block a user