added option to draw marker coordinate system and modified dict for corner marker estimates
This commit is contained in:
parent
ec6b2bbf4a
commit
02a83f405f
|
@ -2,6 +2,7 @@ import pyrealsense2 as rs
|
|||
import numpy as np
|
||||
import cv2
|
||||
import os
|
||||
import time
|
||||
|
||||
from shapely.geometry import LineString
|
||||
from queue import Queue
|
||||
|
@ -10,7 +11,7 @@ import aruco
|
|||
|
||||
class ArucoEstimator:
|
||||
corner_marker_ids = {
|
||||
'a': 15,
|
||||
'a': 0,
|
||||
'b': 1,
|
||||
'c': 2,
|
||||
'd': 3
|
||||
|
@ -19,13 +20,13 @@ class ArucoEstimator:
|
|||
angles = []
|
||||
|
||||
corner_estimates = {
|
||||
'a': {'pixel_coordinate': None, 'real_world_estimate': None, 'n_estimates': 0 },
|
||||
'b': {'pixel_coordinate': None, 'real_world_estimate': None, 'n_estimates': 0 },
|
||||
'c': {'pixel_coordinate': None, 'real_world_estimate': None, 'n_estimates': 0 },
|
||||
'd': {'pixel_coordinate': None, 'real_world_estimate': None, 'n_estimates': 0 },
|
||||
'a': {'pixel_coordinate': None, 'x': None, 'y': None, 'n_estimates': 0 },
|
||||
'b': {'pixel_coordinate': None, 'x': None, 'y': None, 'n_estimates': 0 },
|
||||
'c': {'pixel_coordinate': None, 'x': None, 'y': None, 'n_estimates': 0 },
|
||||
'd': {'pixel_coordinate': None, 'x': None, 'y': None, 'n_estimates': 0 },
|
||||
}
|
||||
|
||||
def __init__(self, robot_marker_ids=None, use_realsense=True, grid_columns=8, grid_rows=8):
|
||||
def __init__(self, robot_marker_ids=None, use_realsense=True, grid_columns=8, grid_rows=8, draw_marker_coordinate_system=False):
|
||||
self.grid_columns = grid_columns
|
||||
self.grid_rows = grid_rows
|
||||
|
||||
|
@ -36,6 +37,8 @@ class ArucoEstimator:
|
|||
|
||||
self.event_queue = Queue()
|
||||
|
||||
self.draw_marker_coordinate_system = draw_marker_coordinate_system
|
||||
|
||||
if use_realsense: # check if realsense camera is connected
|
||||
# Configure depth and color streams
|
||||
self.pipeline = rs.pipeline()
|
||||
|
@ -90,10 +93,10 @@ class ArucoEstimator:
|
|||
py1 = self.corner_estimates['a']['pixel_coordinate'][1]
|
||||
py3 = self.corner_estimates['c']['pixel_coordinate'][1]
|
||||
|
||||
x1 = self.corner_estimates['a']['real_world_estimate'][0]
|
||||
x3 = self.corner_estimates['c']['real_world_estimate'][0]
|
||||
y1 = self.corner_estimates['a']['real_world_estimate'][1]
|
||||
y3 = self.corner_estimates['c']['real_world_estimate'][1]
|
||||
x1 = self.corner_estimates['a']['x']
|
||||
x3 = self.corner_estimates['c']['x']
|
||||
y1 = self.corner_estimates['a']['y']
|
||||
y3 = self.corner_estimates['c']['y']
|
||||
|
||||
alpha = (px - px1) / (px3 - px1)
|
||||
beta = (py - py1) / (py3 - py1)
|
||||
|
@ -126,6 +129,7 @@ class ArucoEstimator:
|
|||
else:
|
||||
# Capture frame-by-frame
|
||||
ret, color_image = self.cv_camera.read()
|
||||
t_image = time.time()
|
||||
|
||||
gray = cv2.cvtColor(color_image, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
|
@ -146,11 +150,13 @@ class ArucoEstimator:
|
|||
|
||||
if marker.id > 0: # draw markers onto the image
|
||||
marker.draw(color_image, np.array([255, 255, 255]), 2, True)
|
||||
aruco.CvDrawingUtils.draw3dAxis(color_image, self.camparam, marker.Rvec, marker.Tvec, .1)
|
||||
|
||||
if self.draw_marker_coordinate_system:
|
||||
aruco.CvDrawingUtils.draw3dAxis(color_image, self.camparam, marker.Rvec, marker.Tvec, .1)
|
||||
|
||||
# store data
|
||||
for id, data in detected_marker_data.items():
|
||||
self.update_estimate(id, data['center'], data['Rvec'], data['Tvec'])
|
||||
self.update_estimate(id, data['center'], data['Rvec'], data['Tvec'], t_image)
|
||||
|
||||
# draw grid
|
||||
color_image = self.draw_grid_lines(color_image, detected_marker_data)
|
||||
|
@ -170,23 +176,27 @@ class ArucoEstimator:
|
|||
# Stop streaming
|
||||
self.pipeline.stop()
|
||||
|
||||
def update_estimate(self, id, pixel_coord, rvec, tvec):
|
||||
def update_estimate(self, id, pixel_coord, rvec, tvec, t_image):
|
||||
# update the marker estimate with new data
|
||||
if id in self.corner_marker_ids.values():
|
||||
# for corner markers we compute the mean of all measurements s.t. the position stabilizes over time
|
||||
# (we assume the markers do not move)
|
||||
corner = next(filter(lambda key: self.corner_marker_ids[key] == id, self.corner_marker_ids.keys())) # get corresponding corner to the detected marker
|
||||
old_estimate = self.corner_estimates[corner]['real_world_estimate']
|
||||
old_estimate_x = self.corner_estimates[corner]['x']
|
||||
old_estimate_y = self.corner_estimates[corner]['y']
|
||||
n_estimates = self.corner_estimates[corner]['n_estimates']
|
||||
|
||||
x = tvec[0][0]
|
||||
y = -tvec[1][0] # flip y coordinate
|
||||
tvec_proj = np.array([x, y])
|
||||
if old_estimate is not None:
|
||||
new_estimate = (n_estimates * old_estimate + tvec_proj) / (n_estimates + 1) # weighted update
|
||||
if not any([old_estimate_x is None, old_estimate_y is None]):
|
||||
new_estimate_x = (n_estimates * old_estimate_x + x) / (n_estimates + 1) # weighted update
|
||||
new_estimate_y = (n_estimates * old_estimate_y + y) / (n_estimates + 1)
|
||||
else:
|
||||
new_estimate = tvec_proj # first estimate
|
||||
self.corner_estimates[corner]['real_world_estimate'] = new_estimate
|
||||
new_estimate_x = x # first estimate
|
||||
new_estimate_y = y
|
||||
self.corner_estimates[corner]['t'] = t_image
|
||||
self.corner_estimates[corner]['x'] = new_estimate_x
|
||||
self.corner_estimates[corner]['y'] = new_estimate_y
|
||||
self.corner_estimates[corner]['n_estimates'] = n_estimates + 1
|
||||
self.corner_estimates[corner]['pixel_coordinate'] = pixel_coord
|
||||
|
||||
|
@ -203,7 +213,7 @@ class ArucoEstimator:
|
|||
angle = -euler_angles[2][0] * np.pi / 180.0
|
||||
|
||||
self.angles.append(angle)
|
||||
self.robot_marker_estimates[id] = (x, y, angle)
|
||||
self.robot_marker_estimates[id] = {'t': t_image, 'x': x, 'y': y, 'angle': angle}
|
||||
|
||||
def all_corners_detected(self):
|
||||
# checks if all corner markers have been detected at least once
|
||||
|
@ -227,10 +237,10 @@ class ArucoEstimator:
|
|||
assert self.all_corners_detected()
|
||||
|
||||
# compute column line
|
||||
a = self.corner_estimates['a']['real_world_estimate']
|
||||
b = self.corner_estimates['b']['real_world_estimate']
|
||||
c = self.corner_estimates['c']['real_world_estimate']
|
||||
d = self.corner_estimates['d']['real_world_estimate']
|
||||
a = np.array([self.corner_estimates['a']['x'], self.corner_estimates['a']['y']])
|
||||
b = np.array([self.corner_estimates['b']['x'], self.corner_estimates['b']['y']])
|
||||
c = np.array([self.corner_estimates['c']['x'], self.corner_estimates['c']['y']])
|
||||
d = np.array([self.corner_estimates['d']['x'], self.corner_estimates['d']['y']])
|
||||
x_frac = (x + 0.5) / self.grid_columns
|
||||
y_frac = (y + 0.5) / self.grid_rows
|
||||
|
||||
|
@ -274,14 +284,13 @@ class ArucoEstimator:
|
|||
return point_of_intersection
|
||||
|
||||
def get_grid_point_from_pos(self):
|
||||
# return the nearest grid point for the given position estimate
|
||||
# TODO return the nearest grid point for the given position estimate
|
||||
pass
|
||||
|
||||
def print_corner_estimates(self):
|
||||
for key, value in self.corner_estimates.items():
|
||||
if value['n_estimates'] != 0:
|
||||
print("corner marker {} at pos {}".format(key, value['real_world_estimate']))
|
||||
print()
|
||||
print(f"corner marker {key} at pos ({value['x']},{value['y']})")
|
||||
|
||||
def draw_corner_line(self, frame, corner_1, corner_2, corner_coords_dict):
|
||||
# draws a line between the given markers onto the given frame
|
||||
|
@ -330,7 +339,8 @@ class ArucoEstimator:
|
|||
def get_robot_state_estimate(self, id):
|
||||
if id in self.robot_marker_estimates:
|
||||
if self.robot_marker_estimates[id] is not None:
|
||||
return np.array(self.robot_marker_estimates[id])
|
||||
return np.array([self.robot_marker_estimates[id]['x'], self.robot_marker_estimates[id]['y'],
|
||||
self.robot_marker_estimates[id]['angle']])
|
||||
else:
|
||||
print(f"error: no estimate available for robot {id}")
|
||||
return None
|
||||
|
@ -346,13 +356,13 @@ class ArucoEstimator:
|
|||
robot_corners_pixel_coords[id] = tuple(detected_marker_data[id]['center'])
|
||||
|
||||
for id, coord in robot_corners_pixel_coords.items():
|
||||
x = self.robot_marker_estimates[id][0]
|
||||
y = self.robot_marker_estimates[id][1]
|
||||
angle = self.robot_marker_estimates[id][2]
|
||||
x = self.robot_marker_estimates[id]['x']
|
||||
y = self.robot_marker_estimates[id]['y']
|
||||
angle = self.robot_marker_estimates[id]['angle']
|
||||
frame = cv2.putText(frame, "pos = ({:5.3f}, {:5.3f}), ang = {:5.3f}".format(x, y, angle), coord, cv2.FONT_HERSHEY_SIMPLEX, 0.50, (0,255,0))
|
||||
return frame
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
estimator = ArucoEstimator(use_realsense=False)
|
||||
estimator = ArucoEstimator(use_realsense=False, robot_marker_ids=[15], draw_marker_coordinate_system=True)
|
||||
estimator.run_tracking()
|
||||
|
|
Loading…
Reference in New Issue
Block a user