Compare commits
No commits in common. "ca8e5aac9b75bc362ad17c6ba2ba36bdfe39f51b" and "019c4590aa834a92bd2237f7076f5461d54e45f3" have entirely different histories.
ca8e5aac9b
...
019c4590aa
|
@ -1,27 +0,0 @@
|
|||
import socket
|
||||
import json
|
||||
|
||||
HOST, PORT = "localhost", 42424
|
||||
|
||||
def move_grid(x, y, orientation, dimx, dimy):
|
||||
print("move grid")
|
||||
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
sock.connect((HOST, PORT))
|
||||
payload = json.dumps({"x": x, "y": y, "dimx": dimx, "dimy": dimy, "orientation": orientation})
|
||||
sock.sendall(f"move_grid_blocking;{payload}\n".encode())
|
||||
target_reached = False
|
||||
try:
|
||||
while not target_reached:
|
||||
reply = sock.recv(1024)
|
||||
if reply == b'':
|
||||
raise RuntimeError
|
||||
#print("got reply: ", reply)
|
||||
target_reached = reply.decode() == 'ack\n'
|
||||
print("target_reached = ", target_reached)
|
||||
except RuntimeError:
|
||||
# try again
|
||||
print("controlling failed -> trying again")
|
||||
move_grid(x, y, orientation, dimx, dimy)
|
||||
|
||||
if __name__ == "__main__":
|
||||
move_grid(3,2,'v', 7, 4)
|
|
@ -1,499 +0,0 @@
|
|||
import numpy as np
|
||||
import random
|
||||
import pygame
|
||||
import os
|
||||
|
||||
from event_server_comm import move_grid
|
||||
|
||||
BLACK = np.array([0, 0, 0], dtype=np.uint8)
|
||||
WHITE = np.array([255, 255, 255], dtype=np.uint8)
|
||||
RED = np.array([255, 0, 0], dtype=np.uint8)
|
||||
BLUE = np.array([0, 0, 255], dtype=np.uint8)
|
||||
YELLOW = np.array([255, 255, 0], dtype=np.uint8)
|
||||
GREEN = np.array([0, 255, 0], dtype=np.uint8)
|
||||
|
||||
pygame.init()
|
||||
|
||||
pygame.font.init() # you have to call this at the start,
|
||||
# if you want to use this module.
|
||||
myfont = pygame.font.SysFont('Comic Sans MS', 55)
|
||||
myfont_small = pygame.font.SysFont('Comic Sans MS', 45)
|
||||
|
||||
P0_text = myfont.render('P0', False, tuple(BLACK))
|
||||
|
||||
tiledt = np.dtype([('x', np.uint8), ('y', np.uint8), ('color', np.uint8, 3), ('star', np.bool)])
|
||||
|
||||
|
||||
|
||||
class Board:
|
||||
valid_colors = [WHITE, RED, BLUE]
|
||||
|
||||
def __init__(self, dim_x, dim_y):
|
||||
self.tiles = np.zeros((dim_y, dim_x), dtype=tiledt)
|
||||
for x in range(dim_x):
|
||||
for y in range(dim_y):
|
||||
self.tiles[y, x]['color'] = random.choice(Board.valid_colors)
|
||||
|
||||
def render(self, scale_fac):
|
||||
dimy, dimx = self.tiles.shape
|
||||
board_surf = pygame.Surface((dimx * scale_fac, dimy * scale_fac))
|
||||
|
||||
star_surf = pygame.Surface((scale_fac, scale_fac), pygame.SRCALPHA)
|
||||
pygame.draw.circle(star_surf, YELLOW, (int(0.5 * scale_fac), int(0.5 * scale_fac)), int(0.25 * scale_fac))
|
||||
|
||||
for y in range(self.tiles.shape[0]):
|
||||
for x in range(self.tiles.shape[1]):
|
||||
pygame.draw.rect(board_surf, tuple(self.tiles[y, x]['color']),
|
||||
(x * scale_fac, y * scale_fac, scale_fac, scale_fac), 0)
|
||||
pygame.draw.rect(board_surf, (0, 0, 0),
|
||||
(x * scale_fac, y * scale_fac, scale_fac, scale_fac), 1)
|
||||
if self.tiles[y, x]['star']:
|
||||
board_surf.blit(star_surf, (x * scale_fac, y * scale_fac, scale_fac, scale_fac))
|
||||
|
||||
return board_surf
|
||||
|
||||
def get_xdims(self):
|
||||
return self.tiles.shape[1]
|
||||
|
||||
def get_ydims(self):
|
||||
return self.tiles.shape[0]
|
||||
|
||||
# def __repr__(self):
|
||||
# s = ''
|
||||
# for y in range(self.tiles.shape[0]):
|
||||
# for x in range(self.tiles.shape[1]):
|
||||
# if (x,y) == (self.robot.x, self.robot.y):
|
||||
# s += self.robot.orientation
|
||||
# else:
|
||||
# s += '.'
|
||||
# s += '\n'
|
||||
# return s
|
||||
|
||||
|
||||
class Robot:
|
||||
orientations = ['^', 'left', 'down', 'right']
|
||||
resulting_orientation = {
|
||||
'^': {'left': '<', 'right': '>'},
|
||||
'>': {'left': '^', 'right': 'v'},
|
||||
'v': {'left': '>', 'right': '<'},
|
||||
'<': {'left': 'v', 'right': '^'},
|
||||
}
|
||||
|
||||
|
||||
def __init__(self, x, y, orientation):
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.orientation = orientation
|
||||
self.position_changed = False
|
||||
|
||||
def get_forward_coordinates(self):
|
||||
# get the coordinates of the neighboring tile in the given direction
|
||||
if self.orientation == '^':
|
||||
return self.y - 1, self.x
|
||||
elif self.orientation == '>':
|
||||
return self.y, self.x + 1
|
||||
elif self.orientation == 'v':
|
||||
return self.y + 1, self.x
|
||||
elif self.orientation == '<':
|
||||
return self.y, self.x - 1
|
||||
else:
|
||||
raise Exception("error: undefined direction")
|
||||
|
||||
def get_angle(self):
|
||||
angle = {'>': 0, '^': np.pi/2, '<': np.pi, 'v': 3*np.pi/2}[self.orientation]
|
||||
return np.rad2deg(angle)
|
||||
|
||||
def render(self, scale_fac):
|
||||
robot_surf = pygame.Surface((scale_fac, scale_fac), pygame.SRCALPHA)
|
||||
pygame.draw.lines(robot_surf, (0, 0, 0), True, [(0.75 * scale_fac, 0.5 * scale_fac),
|
||||
(0.25 * scale_fac, 0.25 * scale_fac),
|
||||
(0.25 * scale_fac, 0.75 * scale_fac)], 3)
|
||||
robot_surf = pygame.transform.rotate(robot_surf, self.get_angle())
|
||||
return robot_surf
|
||||
|
||||
def update_pos(self, dimx, dimy):
|
||||
move_grid(self.x, self.y, self.orientation, dimx, dimy)
|
||||
self.position_changed = False
|
||||
|
||||
def __repr__(self):
|
||||
return f"({self.y}, {self.x}) - {self.orientation}"
|
||||
|
||||
|
||||
class Command:
|
||||
valid_actions = {'forward', 'left', 'right', 'P0', '-'}
|
||||
|
||||
def __init__(self, action=None, color=WHITE):
|
||||
if not (action in Command.valid_actions and any([np.all(color == c) for c in Board.valid_colors])):
|
||||
raise ValueError("invalid values for command")
|
||||
self.action = action
|
||||
self.color = color
|
||||
|
||||
def __repr__(self):
|
||||
return f"{self.action}: {self.color}"
|
||||
|
||||
def render(self, scale_fac):
|
||||
cmd_surf = pygame.Surface((scale_fac, scale_fac))
|
||||
cmd_surf.fill(tuple(self.color))
|
||||
|
||||
arrow_surf = pygame.Surface((300, 300), pygame.SRCALPHA)
|
||||
|
||||
pygame.draw.polygon(arrow_surf, (0, 0, 0),
|
||||
((0, 100), (0, 200), (200, 200), (200, 300), (300, 150), (200, 0), (200, 100)))
|
||||
arrow_surf = pygame.transform.scale(arrow_surf, (int(0.9*scale_fac), int(0.9*scale_fac)))
|
||||
|
||||
if self.action == 'forward':
|
||||
arrow_surf = pygame.transform.rotate(arrow_surf, 90)
|
||||
elif self.action == 'left':
|
||||
arrow_surf = pygame.transform.rotate(arrow_surf, 180)
|
||||
|
||||
if self.action in {'left', 'forward', 'right'}:
|
||||
cmd_surf.blit(arrow_surf, (0.05*scale_fac,0.05*scale_fac,0.95*scale_fac,0.95*scale_fac))
|
||||
elif self.action == 'P0':
|
||||
cmd_surf.blit(P0_text, (0.05*scale_fac,0.05*scale_fac,0.95*scale_fac,0.95*scale_fac))
|
||||
|
||||
return cmd_surf
|
||||
|
||||
class Programmer:
|
||||
def __init__(self, prg):
|
||||
self.prg = prg
|
||||
self.available_inputs = [Command('forward'), Command('left'), Command('right'), Command('P0'),
|
||||
Command('-', color=RED), Command('-', color=BLUE), Command('-', color=WHITE)]
|
||||
self.command_to_edit = 0
|
||||
self.screen_rect = None
|
||||
|
||||
def render(self, scale_fac):
|
||||
"""Render surface with possible inputs for the robot.
|
||||
|
||||
:return: surface of the input commands
|
||||
"""
|
||||
inp_surf = pygame.Surface((len(self.available_inputs) * scale_fac, 1 * scale_fac))
|
||||
for i, inp in enumerate(self.available_inputs):
|
||||
cmd_surf = inp.render(scale_fac)
|
||||
inp_surf.blit(cmd_surf, (i * scale_fac, 0, scale_fac, scale_fac))
|
||||
return inp_surf
|
||||
|
||||
def update_selected_command(self, pos):
|
||||
print(f"clicked at pos = {pos}")
|
||||
xoffset = pos[0] - self.screen_rect.x
|
||||
selected_input_index = xoffset * len(self.available_inputs) // self.screen_rect.width
|
||||
selected_input = self.available_inputs[selected_input_index]
|
||||
|
||||
edited_command = self.prg.cmds[self.command_to_edit]
|
||||
|
||||
print("command before edit = ", edited_command)
|
||||
if selected_input.action != '-':
|
||||
edited_command.action = selected_input.action
|
||||
else:
|
||||
edited_command.color = selected_input.color
|
||||
print("command after edit = ", edited_command)
|
||||
|
||||
class Program:
|
||||
def __init__(self, robot, board, cmds):
|
||||
self.cmds = cmds
|
||||
self.robot = robot
|
||||
self.board = board
|
||||
self.prg_counter = 0
|
||||
self.screen_rect = None
|
||||
|
||||
def step(self, state='running'):
|
||||
cmd = self.cmds[self.prg_counter]
|
||||
self.prg_counter += 1
|
||||
|
||||
# current position
|
||||
x = self.robot.x
|
||||
y = self.robot.y
|
||||
|
||||
# current tile the robot is on
|
||||
tile = self.board.tiles[y, x]
|
||||
|
||||
# apply next instruction of the program
|
||||
if np.all(cmd.color == WHITE) or np.all(cmd.color == tile['color']):
|
||||
# matching color -> execute command
|
||||
if cmd.action == 'forward':
|
||||
ynew, xnew = self.robot.get_forward_coordinates()
|
||||
self.robot.x = xnew
|
||||
self.robot.y = ynew
|
||||
self.robot.position_changed = True
|
||||
#self.robot.update_pos(self.board.get_xdims(), self.board.get_ydims())
|
||||
elif cmd.action in {'left', 'right'}:
|
||||
self.robot.orientation = Robot.resulting_orientation[self.robot.orientation][cmd.action]
|
||||
#self.robot.update_pos(self.board.get_xdims(), self.board.get_ydims())
|
||||
self.robot.position_changed = True
|
||||
elif cmd.action == 'P0':
|
||||
self.prg_counter = 0
|
||||
else:
|
||||
print("color not matching -> skipping command")
|
||||
|
||||
# update state for new robot position
|
||||
if (not (0 <= self.robot.x < self.board.tiles.shape[1])) or not (0 <= self.robot.y < self.board.tiles.shape[0]):
|
||||
# robot leaves the board -> GAME OVER
|
||||
print("GAME OVER")
|
||||
self.robot.update_pos(self.board.get_xdims(), self.board.get_ydims())
|
||||
return 'game_over'
|
||||
|
||||
# robot collects star on new tile
|
||||
tile = self.board.tiles[self.robot.y, self.robot.x]
|
||||
if tile['star']:
|
||||
tile['star'] = False
|
||||
|
||||
if all([not t['star'] for t in self.board.tiles.flatten()]):
|
||||
print("YOU WON")
|
||||
return 'won'
|
||||
|
||||
# by default we continue in the running state
|
||||
return state
|
||||
|
||||
def render(self, scale_fac, prg_counter_override=None):
|
||||
"""Render the current program. This will render all commands and highlight the next command to execute
|
||||
(determined by self.prg_counter).
|
||||
|
||||
The prg_counter_override can be used to highlight a different command instead. This is used during input mode
|
||||
to highlight the command the user will edit.
|
||||
|
||||
:param scale_fac:
|
||||
:param prg_counter_override:
|
||||
:return:
|
||||
"""
|
||||
prg_counter = self.prg_counter
|
||||
if prg_counter_override is not None:
|
||||
prg_counter = prg_counter_override
|
||||
prg_surf = pygame.Surface((5 * scale_fac, 1 * scale_fac))
|
||||
for i in range(5):
|
||||
if i < len(self.cmds):
|
||||
cmd = self.cmds[i]
|
||||
cmd_surf = cmd.render(scale_fac)
|
||||
else:
|
||||
cmd_surf = pygame.Surface((scale_fac,scale_fac))
|
||||
cmd_surf.fill(WHITE)
|
||||
if prg_counter is not None and i == prg_counter:
|
||||
pygame.draw.rect(cmd_surf, tuple(GREEN), (0, 0, scale_fac, scale_fac), 5)
|
||||
prg_surf.blit(cmd_surf, (i * scale_fac, 0, scale_fac, scale_fac))
|
||||
|
||||
return prg_surf
|
||||
|
||||
def get_clicked_command(self, pos):
|
||||
print(f"clicked at pos = {pos}")
|
||||
xoffset = pos[0] - self.screen_rect.x
|
||||
clicked_cmd = xoffset * len(self.cmds) // self.screen_rect.width
|
||||
print("clicked command = ", clicked_cmd)
|
||||
return clicked_cmd
|
||||
|
||||
|
||||
class Game:
|
||||
def __init__(self, dimx, dimy, robotx, roboty):
|
||||
self.robot = Robot(x=robotx, y=roboty, orientation='v')
|
||||
self.board = Board(dimx, dimy)
|
||||
coin1x = np.random.randint(0, dimx)
|
||||
coin1y = np.random.randint(0, dimy)
|
||||
self.board.tiles[coin1y,coin1x]['star'] = True
|
||||
self.board.tiles[3,2]['star'] = True
|
||||
|
||||
# TODO fix number of commands at 5
|
||||
self.cmds = [Command('forward'), Command('left', color=RED), Command('left', color=BLUE), Command('P0'), Command('-')]
|
||||
self.state = 'won'
|
||||
|
||||
self.prg = Program(self.robot, self.board, self.cmds)
|
||||
|
||||
self.programmer = Programmer(self.prg)
|
||||
|
||||
#self.scale_fac = 180
|
||||
self.scale_fac = 125
|
||||
self.beamer_mode = False
|
||||
self.screen = pygame.display.set_mode((int(self.board.tiles.shape[1] * self.scale_fac * 1.1),
|
||||
int((self.board.tiles.shape[0] + 2) * self.scale_fac * 1.2)))
|
||||
|
||||
self.game_over_text = myfont.render('GAME OVER', False, BLACK)
|
||||
self.won_text = myfont.render('YOU WON', False, BLACK)
|
||||
self.run_text = myfont.render('RUN', False, tuple(BLACK))
|
||||
self.stop_text = myfont_small.render('STOP', False, tuple(BLACK))
|
||||
self.step_text = myfont_small.render('STEP', False, tuple(BLACK))
|
||||
|
||||
# save initial state
|
||||
self.initial_pos = (self.robot.x, self.robot.y, self.robot.orientation)
|
||||
self.inital_board_tiles = self.board.tiles.copy()
|
||||
|
||||
def render(self):
|
||||
"""Render the game screen.
|
||||
|
||||
This will render the board and the robot.
|
||||
Depending on the display mode it will also render the current program and the input commands for the robot.
|
||||
|
||||
:param prg_counter:
|
||||
:return:
|
||||
"""
|
||||
if self.beamer_mode:
|
||||
dx = 0
|
||||
dy = 0
|
||||
else:
|
||||
dx = int(0.05 * self.screen.get_width())
|
||||
dy = int(0.05 * self.screen.get_height())
|
||||
self.screen.fill(tuple(BLACK))
|
||||
|
||||
# render the board
|
||||
board_surf = self.board.render(self.scale_fac)
|
||||
|
||||
# render robot onto the board surface
|
||||
robot_surf = self.robot.render(self.scale_fac)
|
||||
board_surf.blit(robot_surf, (self.robot.x * self.scale_fac, self.robot.y * self.scale_fac, self.scale_fac, self.scale_fac))
|
||||
self.screen.blit(board_surf, (dx, dy, dx + self.board.tiles.shape[1] * self.scale_fac, dy + self.board.tiles.shape[0] * self.scale_fac))
|
||||
|
||||
if not self.beamer_mode:
|
||||
# if we are not in beamer mode we also show the current program / inputs
|
||||
|
||||
# render program
|
||||
if self.state == 'input':
|
||||
# in input mode we highlight the command which is selected for edit
|
||||
prg_surf = self.prg.render(self.scale_fac, prg_counter_override=self.programmer.command_to_edit)
|
||||
else:
|
||||
# in other modes we render the current program counter
|
||||
prg_surf = self.prg.render(self.scale_fac)
|
||||
prg_surf = pygame.transform.scale(prg_surf, (self.screen.get_width() * 2 // 3, self.scale_fac * 2 // 3))
|
||||
self.prg.screen_rect = pygame.Rect((dx, board_surf.get_height() + 2 * dy, prg_surf.get_width(), prg_surf.get_height()))
|
||||
self.screen.blit(prg_surf, self.prg.screen_rect)
|
||||
|
||||
# render input fields and buttons
|
||||
inp_surf = self.programmer.render(self.scale_fac)
|
||||
inp_surf = pygame.transform.scale(inp_surf, (self.screen.get_width() * 2 // 3, self.scale_fac * 2 // 3))
|
||||
self.programmer.screen_rect = pygame.Rect((dx, board_surf.get_height() + prg_surf.get_height() + 3 * dy, inp_surf.get_width(), inp_surf.get_height()))
|
||||
self.screen.blit(inp_surf, self.programmer.screen_rect)
|
||||
|
||||
btn_surf = pygame.Surface((3 * self.scale_fac//2, self.scale_fac))
|
||||
self.btn_rect = pygame.Rect((2 * dx + prg_surf.get_width(), board_surf.get_height() + 2 * dy,
|
||||
btn_surf.get_height(), btn_surf.get_width()))
|
||||
if self.state == 'input':
|
||||
btn_surf.fill(tuple(GREEN))
|
||||
btn_surf.blit(self.run_text, (0, 10))
|
||||
elif self.state == 'running':
|
||||
btn_surf.fill(tuple(RED))
|
||||
btn_surf.blit(self.stop_text, (0, 10))
|
||||
elif self.state == 'stepping':
|
||||
btn_surf.fill(tuple(YELLOW))
|
||||
btn_surf.blit(self.step_text, (0, 10))
|
||||
self.screen.blit(btn_surf, self.btn_rect)
|
||||
|
||||
# render messages
|
||||
if self.state == 'game_over':
|
||||
game_over_surf = pygame.Surface((self.screen.get_width() // 2, self.screen.get_height() // 2))
|
||||
game_over_surf.fill(tuple(GREEN))
|
||||
game_over_surf.blit(self.game_over_text, ((game_over_surf.get_width() - self.game_over_text.get_width()) // 2,
|
||||
(game_over_surf.get_height() - self.game_over_text.get_height()) // 2))
|
||||
self.screen.blit(game_over_surf, (self.screen.get_width() // 4, self.screen.get_height() // 4))
|
||||
pygame.display.update()
|
||||
pygame.time.wait(1500)
|
||||
self.state = 'reset'
|
||||
elif self.state == 'won':
|
||||
won_surf = pygame.Surface((self.screen.get_width() // 2, self.screen.get_height() // 2))
|
||||
won_surf.fill(tuple(GREEN))
|
||||
won_surf.blit(self.won_text,
|
||||
((won_surf.get_width() - self.won_text.get_width()) // 2,
|
||||
(won_surf.get_height() - self.won_text.get_height()) // 2))
|
||||
self.screen.blit(won_surf, (self.screen.get_width() // 4, self.screen.get_height() // 4))
|
||||
pygame.display.update()
|
||||
pygame.time.wait(1500)
|
||||
self.state = 'reset'
|
||||
|
||||
pygame.display.flip()
|
||||
|
||||
def process_inputs(self):
|
||||
# proceed events
|
||||
for event in pygame.event.get():
|
||||
if event.type == pygame.QUIT:
|
||||
self.state = 'quit'
|
||||
# handle MOUSEBUTTONUP
|
||||
elif event.type == pygame.MOUSEBUTTONUP:
|
||||
pos = pygame.mouse.get_pos()
|
||||
|
||||
# select command to edit by the programmer
|
||||
if self.prg.screen_rect is not None:
|
||||
if self.prg.screen_rect.collidepoint(pos):
|
||||
print(f"clicked at pos = {pos}")
|
||||
self.programmer.command_to_edit = self.prg.get_clicked_command(pos)
|
||||
|
||||
# set the selected command to a new value
|
||||
if self.programmer.screen_rect is not None:
|
||||
if self.programmer.screen_rect.collidepoint(pos):
|
||||
self.programmer.update_selected_command(pos)
|
||||
|
||||
# clicked RUN/STOP button
|
||||
if self.btn_rect is not None and self.btn_rect.collidepoint(*pos):
|
||||
print(f"clicked at pos = {pos}")
|
||||
if self.state == 'running':
|
||||
self.state = 'input'
|
||||
elif self.state == 'input':
|
||||
self.state = 'running'
|
||||
elif self.state == 'stepping':
|
||||
self.state = self.prg.step(self.state)
|
||||
elif event.type == pygame.KEYUP:
|
||||
if event.key == pygame.K_x:
|
||||
if not self.beamer_mode:
|
||||
# switch to beamer mode
|
||||
os.environ['SDL_VIDEO_WINDOW_POS'] = '1920, 280'
|
||||
self.scale_fac = 180
|
||||
self.screen = pygame.display.set_mode((self.board.tiles.shape[1] * self.scale_fac,
|
||||
self.board.tiles.shape[0] * self.scale_fac),
|
||||
pygame.NOFRAME)
|
||||
self.beamer_mode = True
|
||||
else:
|
||||
# switch to normal mode
|
||||
os.environ['SDL_VIDEO_WINDOW_POS'] = '0, 0'
|
||||
self.scale_fac = 125
|
||||
self.screen = pygame.display.set_mode((int(self.board.tiles.shape[1] * self.scale_fac * 1.1),
|
||||
int((self.board.tiles.shape[0] + 2) * self.scale_fac * 1.2)))
|
||||
self.beamer_mode = False
|
||||
elif event.key == pygame.K_s:
|
||||
# run program
|
||||
self.state = 'running'
|
||||
elif event.key == pygame.K_SPACE:
|
||||
if self.state != 'stepping':
|
||||
self.state = 'stepping'
|
||||
else:
|
||||
self.state = self.prg.step(self.state)
|
||||
elif event.key == pygame.K_r:
|
||||
self.state = 'reset'
|
||||
return self.state
|
||||
|
||||
def reset(self):
|
||||
self.prg.prg_counter = 0
|
||||
self.robot.x = self.initial_pos[0]
|
||||
self.robot.y = self.initial_pos[1]
|
||||
self.robot.orientation = self.initial_pos[2]
|
||||
self.robot.update_pos(self.board.get_xdims(), self.board.get_ydims())
|
||||
self.board.tiles = self.inital_board_tiles.copy()
|
||||
return 'input'
|
||||
|
||||
def run(self):
|
||||
running = True
|
||||
while running:
|
||||
self.state = self.process_inputs()
|
||||
if self.state == 'input':
|
||||
pass
|
||||
elif self.state == 'running':
|
||||
self.state = self.prg.step()
|
||||
elif self.state == 'reset':
|
||||
self.state = self.reset()
|
||||
elif self.state == 'quit':
|
||||
running = False
|
||||
elif self.state == 'stepping':
|
||||
pass
|
||||
elif self.state == 'game_over' or self.state == 'won':
|
||||
pass
|
||||
else:
|
||||
print("unknown state")
|
||||
return
|
||||
|
||||
self.render()
|
||||
if self.robot.position_changed:
|
||||
self.robot.update_pos(self.board.get_xdims(), self.board.get_ydims())
|
||||
|
||||
pygame.time.wait(100)
|
||||
|
||||
if __name__ == "__main__":
|
||||
seed = 2
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
game = Game(dimx=7, dimy=4, robotx=3, roboty=1)
|
||||
game.run()
|
||||
|
||||
# TODOs
|
||||
# - in stepping mode (s) it is possible to drive outside of the map
|
||||
# - when no P0 command is present the program counter will overflow
|
|
@ -10,7 +10,6 @@ import pyqtgraph as pg
|
|||
|
||||
|
||||
from shapely.geometry import LineString
|
||||
from shapely.affinity import scale
|
||||
from queue import Queue
|
||||
|
||||
import aruco
|
||||
|
@ -449,11 +448,8 @@ class ArucoEstimator:
|
|||
row_line_top = a + y_frac * vad
|
||||
row_line_bottom = b + y_frac * vbc
|
||||
|
||||
column_line_orig = LineString([column_line_top, column_line_bottom])
|
||||
row_line_orig = LineString([row_line_top, row_line_bottom])
|
||||
|
||||
column_line = scale(column_line_orig, 10, 10)
|
||||
row_line = scale(row_line_orig, 10, 10)
|
||||
column_line = LineString([column_line_top, column_line_bottom])
|
||||
row_line = LineString([row_line_top, row_line_bottom])
|
||||
|
||||
int_pt = column_line.intersection(row_line)
|
||||
point_of_intersection = np.array([int_pt.x, int_pt.y])
|
||||
|
|
|
@ -57,8 +57,8 @@ class ControlCommander:
|
|||
if not all_detected:
|
||||
print(f"warning: no measurements available for the following robots: {undetected_robots}")
|
||||
time.sleep(0.5)
|
||||
print("all robots detected -> starting control")
|
||||
|
||||
print("starting control")
|
||||
self.running = True
|
||||
while self.running:
|
||||
while not self.event_listener.event_queue.empty():
|
||||
|
@ -111,13 +111,13 @@ class ControlCommander:
|
|||
if __name__ == '__main__':
|
||||
id_ip_dict = {
|
||||
#11: '10.10.11.88',
|
||||
#12: '192.168.1.12',
|
||||
12: '192.168.1.12',
|
||||
13: '192.168.1.13',
|
||||
#14: '10.10.11.89',
|
||||
}
|
||||
|
||||
# controller_type = {12: 'mpc', 13: 'pid'}
|
||||
controller_type = 'mpc'
|
||||
controller_type = 'pid'
|
||||
|
||||
rc = ControlCommander(id_ip_dict, controller_type=controller_type)
|
||||
rc.run()
|
||||
|
|
|
@ -12,38 +12,30 @@ class MeasurementHandler(socketserver.BaseRequestHandler):
|
|||
data = self.request.recv(1024).strip()
|
||||
|
||||
cur_thread = threading.current_thread()
|
||||
print(f"start current thread {cur_thread}")
|
||||
print(f"current thread {cur_thread}")
|
||||
|
||||
if 'events' in data.decode():
|
||||
print(f"{cur_thread} subscribed to events")
|
||||
self.request.sendall('subscribed to events\n'.encode())
|
||||
# send any events in the event queue to the subscriber
|
||||
event_loop_running = True
|
||||
while event_loop_running:
|
||||
try:
|
||||
while not self.server.estimator.event_queue.empty():
|
||||
event = self.server.estimator.event_queue.get()
|
||||
# we distinguish two kinds of events:
|
||||
if event[0] == 'response_event':
|
||||
# 1. for 'response_event' events we expect the event subscriber to give a reply which will then
|
||||
# by passed on to the response queue for transmitting to the original correspondent
|
||||
message = event[1]['event']
|
||||
#print(f"passing command {message} on to subscriber")
|
||||
self.request.sendall((json.dumps(message) + '\n').encode())
|
||||
reply = self.request.recv(1024)
|
||||
#print(f"putting reply {reply} in response queue")
|
||||
self.server.response_queue.put(reply)
|
||||
else:
|
||||
# 2. for other types of events we don't expect a reply and just pass them on to the subscriber
|
||||
self.request.sendall((json.dumps(event) + '\n').encode())
|
||||
self.server.estimator.last_event = None
|
||||
time.sleep(1.0 / self.server.max_measurements_per_second)
|
||||
except Exception as e:
|
||||
print(f"exception in event loop: {e}")
|
||||
event_loop_running = False
|
||||
print("after event loop")
|
||||
while True:
|
||||
while not self.server.estimator.event_queue.empty():
|
||||
event = self.server.estimator.event_queue.get()
|
||||
# we distinguish two kinds of events:
|
||||
if event[0] == 'response_event':
|
||||
# 1. for 'response_event' events we expect the event subscriber to give a reply which will then
|
||||
# by passed on to the response queue for transmitting to the original correspondent
|
||||
message = event[1]['event']
|
||||
#print(f"passing command {message} on to subscriber")
|
||||
self.request.sendall((json.dumps(message) + '\n').encode())
|
||||
reply = self.request.recv(1024)
|
||||
#print(f"putting reply {reply} in response queue")
|
||||
self.server.response_queue.put(reply)
|
||||
else:
|
||||
# 2. for other types of events we don't expect a reply and just pass them on to the subscriber
|
||||
self.request.sendall((json.dumps(event) + '\n').encode())
|
||||
self.server.estimator.last_event = None
|
||||
time.sleep(1.0 / self.server.max_measurements_per_second)
|
||||
elif 'corners' in data.decode():
|
||||
print(f"{cur_thread} subscribed to corners")
|
||||
# send positions of the board markers
|
||||
corner_estimates = self.server.estimator.corner_estimates
|
||||
response = {}
|
||||
|
@ -51,23 +43,19 @@ class MeasurementHandler(socketserver.BaseRequestHandler):
|
|||
response[corner] = {'x': data['x'], 'y': data['y']}
|
||||
self.request.sendall((json.dumps(response) + '\n').encode())
|
||||
elif 'move_grid_blocking' in data.decode():
|
||||
print(f"{cur_thread} subscribed move_grid_blocking")
|
||||
|
||||
# if we receive a move_grid event
|
||||
# ( e.g. move_grid_blocking;{"x":1,"y":1,"dimx":10,"dimy":10,"orientation":"^"} )
|
||||
#move_grid_blocking;{"x": 1, "y": 2, "dimx": 7, "dimy": 4, "orientation": ">"}
|
||||
# ( e.g. move_grid;{"x":1,"y":1,"dimx":10,"dimy":10,"orientation":"^","require_response":True} )
|
||||
# we compute the corresponding real-world position the robot should drive to
|
||||
# and then create a new move event which is put in the event queue and will be propagated to the ControlCommander
|
||||
data_decode = data.decode()
|
||||
#print("data: ", data_decode)
|
||||
payload = data_decode.split(';')[1]
|
||||
#print("payload: ", payload)
|
||||
# print("data: ", data_decode)
|
||||
payload = data.decode().split(';')[1]
|
||||
grid_pos = json.loads(payload)
|
||||
#print("grid_pos = ", grid_pos)
|
||||
# print("grid_pos = ", grid_pos)
|
||||
pos = self.server.estimator.get_pos_from_grid_point(grid_pos['x'], grid_pos['y'], grid_pos['dimx'],
|
||||
grid_pos['dimy'], grid_pos['orientation'])
|
||||
#print("pos = ", pos)
|
||||
#print("event requiring response")
|
||||
# print("pos = ", pos)
|
||||
# print("event requiring response")
|
||||
# put blocking move command in event queue
|
||||
self.server.estimator.event_queue.put(('response_event',
|
||||
{'event': ('move_blocking', {'x': pos[0], 'y': pos[1], 'angle': pos[2]})}))
|
||||
|
@ -76,17 +64,13 @@ class MeasurementHandler(socketserver.BaseRequestHandler):
|
|||
# TODO this assumes that we wait only for at most one response at a time
|
||||
# we could add some kind of reference here to handle multiple responses (e.g. id of the response to wait for)
|
||||
while self.server.response_queue.empty():
|
||||
time.sleep(0.2)
|
||||
self.request.sendall(b'.\n')
|
||||
pass
|
||||
while not self.server.response_queue.empty():
|
||||
reply = self.server.response_queue.get()
|
||||
reply = self.server.response_queue.get()
|
||||
|
||||
# send back response to the original source
|
||||
print(f"sending reply {reply} back to correspondent {self.request}")
|
||||
#print(f"sending reply {reply} back to correspondent {self.request}")
|
||||
self.request.sendall(reply)
|
||||
else:
|
||||
print(f"{cur_thread} subscribed to robot position")
|
||||
# send robot position
|
||||
try:
|
||||
marker_id = int(data)
|
||||
|
@ -95,22 +79,15 @@ class MeasurementHandler(socketserver.BaseRequestHandler):
|
|||
|
||||
if marker_id is not None:
|
||||
if marker_id in self.server.estimator.robot_marker_estimates:
|
||||
marker_loop_running = True
|
||||
while marker_loop_running:
|
||||
try:
|
||||
self.request.sendall((json.dumps(self.server.estimator.robot_marker_estimates[marker_id])
|
||||
while True:
|
||||
self.request.sendall((json.dumps(self.server.estimator.robot_marker_estimates[marker_id])
|
||||
+ '\n').encode())
|
||||
time.sleep(1.0 / self.server.max_measurements_per_second)
|
||||
except Exception as e:
|
||||
print(f"exception in marker loop: {e}")
|
||||
marker_loop_running = False
|
||||
time.sleep(1.0 / self.server.max_measurements_per_second)
|
||||
else:
|
||||
self.request.sendall("error: unknown robot marker id\n".encode())
|
||||
else:
|
||||
self.request.sendall("error: data not understood. "
|
||||
"expected <robot marker id (int)> or 'events'\n".encode())
|
||||
|
||||
print(f"end current thread {cur_thread}")
|
||||
return
|
||||
|
||||
|
||||
|
@ -128,7 +105,7 @@ class MeasurementServer(socketserver.ThreadingMixIn, socketserver.TCPServer):
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
aruco_estimator = ArucoEstimator(use_realsense=True, robot_marker_ids=[12, 13])
|
||||
aruco_estimator = ArucoEstimator(use_realsense=False, robot_marker_ids=[12, 13])
|
||||
|
||||
# first we start thread for the measurement server
|
||||
measurement_server = MeasurementServer(('0.0.0.0', 42424), MeasurementHandler, aruco_estimator,
|
||||
|
|
|
@ -6,7 +6,7 @@ from casadi_opt import OpenLoopSolver
|
|||
|
||||
|
||||
class MPCController(ControllerBase):
|
||||
def __init__(self, N=10, T=1.0):
|
||||
def __init__(self, N=20, T=1.0):
|
||||
super().__init__()
|
||||
self.t = None
|
||||
|
||||
|
|
|
@ -70,9 +70,9 @@ class PIDController(ControllerBase):
|
|||
angles_unwrapped = np.unwrap([x_pred[2], target_angle]) # unwrap angle to avoid jump in data
|
||||
|
||||
e_angle = angles_unwrapped[0] - angles_unwrapped[1] # angle difference
|
||||
e_pos = np.linalg.norm(v[0:2])
|
||||
e_pos = np.linalg.norm(v)
|
||||
|
||||
if e_pos < 0.03:
|
||||
if e_pos < 0.05:
|
||||
self.mode = 'angle'
|
||||
self.e_angle_old = 0
|
||||
self.e_pos_old = 0
|
||||
|
@ -111,10 +111,6 @@ class PIDController(ControllerBase):
|
|||
u2 = 0.0
|
||||
return u1, u2
|
||||
|
||||
def stop(self):
|
||||
super(PIDController, self).stop()
|
||||
self.t = None
|
||||
|
||||
def apply_control(self, control):
|
||||
self.t = time.time() # save time when the most recent control was applied
|
||||
super(PIDController, self).apply_control(control)
|
||||
|
|
|
@ -111,14 +111,12 @@ class ControlledRobot(Robot):
|
|||
|
||||
def start_control(self):
|
||||
if self.controller is not None:
|
||||
print("starting control")
|
||||
self.controller.start()
|
||||
else:
|
||||
raise Exception("Error: Cannot start control: there is not controller attached to the robot!")
|
||||
|
||||
def stop_control(self):
|
||||
if self.controller is not None:
|
||||
print("stopping control")
|
||||
self.controller.stop()
|
||||
else:
|
||||
raise Exception("Error: Cannot stop control: there is not controller attached to the robot!")
|
||||
|
@ -143,9 +141,8 @@ class ControlledRobot(Robot):
|
|||
angles_unwrapped = np.unwrap([current_pos[2], target_pos[2]]) # unwrap angle to avoid jump in data
|
||||
e_angle = angles_unwrapped[0] - angles_unwrapped[1] # angle difference
|
||||
e_pos = np.linalg.norm(v[0:2])
|
||||
#print(f"target_pos = {target_pos}, current_pos = {current_pos}, e_pos = {e_pos}, e_ang = {e_angle}")
|
||||
print(f"e_pos = {e_pos}, e_ang = {e_angle}")
|
||||
close_to_target = e_pos < 0.075 and abs(e_angle) < 0.1
|
||||
close_to_target = e_pos < 0.05 and abs(e_angle) < 0.1
|
||||
time.sleep(0.1)
|
||||
print("target reached!")
|
||||
self.stop_control()
|
||||
|
|
Loading…
Reference in New Issue
Block a user