RoboRallyGUI/roborally.py

302 lines
11 KiB
Python
Raw Normal View History

2020-09-19 19:15:23 +00:00
import random
2020-09-20 16:04:35 +00:00
import sys
2020-09-19 19:15:23 +00:00
random.seed(0)
class Card:
possible_moves = ['forward', 'forward x2', 'forward x3', 'backward', 'turn left', 'turn right', 'turn around']
card_counter = 0
def __init__(self):
self.number = Card.card_counter
Card.card_counter += 1
self.action = random.choice(Card.possible_moves)
self.priority = random.randint(0, 100)
def __str__(self):
return "Card No. " + str(self.number) + " " + self.action + " " + str(self.priority)
def __repr__(self):
return self.action + " (" + str(self.priority) + ")"
class CardDeck:
def __init__(self, n=84):
self.deck = {}
# generate cards
for i in range(0, n):
self.deck[i] = Card()
self.dealt = set()
self.discard_pile = set()
def draw_cards(self, n=1):
available = set(self.deck.keys()).difference(self.dealt)
# print("{} cards are available".format(len(available)))
if len(available) < n:
drawn = list(available) # give out remaining cards
# print("drawing remaining {} cards".format(len(drawn)))
self.dealt = self.dealt.union(drawn)
# put the cards from the discard pile back into the game
self.dealt = self.dealt - self.discard_pile
self.discard_pile = set() # reset the discard pile
# draw rest of cards
available = set(self.deck.keys()).difference(self.dealt)
# print("drawing another {} cards".format(n - len(drawn)))
drawn += random.sample(available, n - len(drawn))
else:
drawn = random.sample(available, n)
# print("cards drawn: {}".format(drawn))
self.dealt = self.dealt.union(drawn)
return [self.deck[i] for i in drawn]
def return_cards(self, cards):
self.discard_pile = self.discard_pile.union(set([c.number for c in cards]))
pass
deck = CardDeck()
class Robot:
def __init__(self, x, y, orientation, id, board):
self.x = x
self.y = y
self.orientation = orientation
self.id = id
self.board = board
2020-09-20 16:04:35 +00:00
# mark the tile on the board as occupied
self.board[(x,y)].occupier = self
2020-09-19 19:15:23 +00:00
def get_accessed_tiles(self, count):
2020-09-20 16:04:35 +00:00
# create a list of all tiles the robot would enter if it drives <count> steps forward
2020-09-19 19:15:23 +00:00
tiles = []
2020-09-20 16:04:35 +00:00
current_tile = self.board[(self.x, self.y)]
for i in range(1, count + 1):
current_tile = self.board.get(current_tile.get_neighbor_coordinates(self.orientation))
tiles.append(current_tile)
2020-09-19 19:15:23 +00:00
return tiles
2020-09-20 16:04:35 +00:00
def is_pushable(self, direction):
# check if the robot can be pushed in the given direction
# this is the case if there is a non-blocking tile next to the robot or if there is another robot that is pushable
robot_tile = self.board[(self.x, self.y)]
neighbor_tile = self.board.get(robot_tile.get_neighbor_coordinates(direction))
if neighbor_tile is None: # neighbor tile could not be found -> robot would be pushed out of the board
return False
else:
if neighbor_tile.is_empty():
return True
elif neighbor_tile.modifier == '#': # if there's a wall on the neighbor tile the robot cannot be pushed there
return False
else:
# this means there's another robot on the neighbor tile -> check if it can be pushed away
return neighbor_tile.occupant.is_pushable(direction)
def has_opposite_orientation(self, direction):
opposites = [('^', 'v'), ('>', '<'), ('v', '^'), ('<', '>')]
return (self.orientation, direction) in opposites
def get_turn_direction(self, target_orienation):
# get the direction to turn to in order to face in the same direction as the given orientation
directions = {
('^', '>'): 'turn right',
('^', 'v'): 'turn around',
('^', '<'): 'turn left',
('>', 'v'): 'turn right',
('>', '<'): 'turn around',
('>', '^'): 'turn left',
('v', '<'): 'turn right',
('v', '^'): 'turn around',
('v', '>'): 'turn left',
('<', '^'): 'turn right',
('<', '>'): 'turn around',
('<', 'v'): 'turn left',
}
return directions[(self.orientation, target_orienation)]
2020-09-19 19:15:23 +00:00
def move(self, type):
pass
def __str__(self):
return str(self.id)
class Tile:
# possible modifiers:
# conveyors: <, >, ^, v
# repair station: r
# flag: f<number>
def __init__(self, x, y, modifier=None):
self.modifier = modifier
self.occupant = None
self.x = x
self.y = y
2020-09-20 16:04:35 +00:00
def get_neighbor_coordinates(self, direction):
# get the coordinates of the neighboring tile in the given direction
if direction == '^':
return (self.x, self.y - 1)
elif direction == '>':
return (self.x + 1, self.y)
elif direction == 'v':
return (self.x, self.y + 1)
elif direction == '<':
return (self.x - 1, self.y)
else:
print("error: unknown direction")
sys.exit(1)
2020-09-19 19:15:23 +00:00
def is_empty(self):
2020-09-20 16:04:35 +00:00
# check if the tile is non-empty and does not contain a wall
return self.occupant is None and self.modifier != '#'
2020-09-19 19:15:23 +00:00
def __str__(self):
if self.is_empty():
if self.modifier is None:
return ' '
else:
return self.modifier
else:
return str(self.occupant)
class Board:
x_dims = 12 # number of tiles in x direction
y_dims = 6 # number of tiles in y direction
def __init__(self):
self.board = {}
2020-09-20 16:04:35 +00:00
for x in range(Board.x_dims + 2):
for y in range(Board.y_dims + 2):
if (x == 0) or (x == Board.x_dims + 1) or (y == 0) or (y == Board.y_dims + 1):
# place walls around the board
self.board[(x, y)] = Tile(x, y, '#')
elif x == 1 and (y >= 1) and (y <= 4):
2020-09-19 19:15:23 +00:00
self.board[(x, y)] = Tile(x, y, 'v')
else:
2020-09-20 16:04:35 +00:00
self.board[(x,y)] = Tile(x,y)
2020-09-19 19:15:23 +00:00
self.robots = {}
2020-09-20 16:04:35 +00:00
self.robots[0] = Robot(3, 1, '<', 0, self.board)
self.robots[1] = Robot(1, 1, 'v', 1, self.board)
2020-09-19 19:15:23 +00:00
def handle_single_action(self, action, robot):
if 'forward' in action: # driving forward
if "x2" in action:
move_count = 2
elif "x3" in action:
move_count = 3
else:
move_count = 1
accessed_tiles = robot.get_accessed_tiles(move_count)
for tile in accessed_tiles:
2020-09-20 16:04:35 +00:00
if tile.modifier == '#': # robot hits a wall -> stop the robot
2020-09-19 19:15:23 +00:00
pass
2020-09-20 16:04:35 +00:00
elif tile.modifier == 'X': # robot drives into a pit -> take damage
2020-09-19 19:15:23 +00:00
pass
2020-09-20 16:04:35 +00:00
elif any([(tile.x, tile.y) == (r.x, r.y) for r in
self.robots.values()]): # robots hits a tile occupied by another robot
pushed_robot = next(filter(lambda r: (tile.x, tile.y) == (r.x, r.y), self.robots.values()))
if pushed_robot.is_pushable(robot.orientation): # check if robot is pushable in the given direction
if pushed_robot.orientation == robot.orientation:
# the pushed robot can just drive forward
self.handle_single_action('forward', pushed_robot)
elif pushed_robot.has_opposite_orientation(robot.orientation):
# the pushed robot can drive backward
self.handle_single_action('backward', pushed_robot)
else:
# we first have to turn the pushed robot s.t. it faces in the same orientation as the
# pushing robot
turn_direction = pushed_robot.get_turn_direction(robot.orientation)
self.handle_single_action(turn_direction, pushed_robot)
# then the pushed robot drives one step forward
self.handle_single_action('forward', pushed_robot)
# afterwards we turn the robot back to the original orientation
if turn_direction == 'turn left':
turn_back_direction = 'turn right'
elif turn_direction == 'turn right':
turn_back_direction = 'turn left'
else:
print("error: invalid turn direction")
sys.exit(1)
self.handle_single_action(turn_back_direction, pushed_robot)
else: # robot is not pushable -> do not move
pass
2020-09-19 19:15:23 +00:00
else:
# now the tile should be empty so the robot can move into the tile
2020-09-20 16:04:35 +00:00
# TODO: possible problem: what happens when robot cannot be pushed out of the way (e.g. because it is
# blocked by a wall) -> check if robot is pushable beforehand
2020-09-19 19:15:23 +00:00
# -> register move action to process
pass
elif action == 'backward':
# basically do the same as with forward
pass
elif action == 'turn left':
pass
elif action == 'turn right':
pass
elif action == 'turn around':
pass
def apply_actions(self, cards):
# apply the actions to the board and generate a list of movement commands
for i, phase in enumerate(cards): # process register phases
print("processing phase {}".format(i+1))
# sort actions by priority
sorted_actions = sorted(phase, key=lambda a: a[1].priority)
for a in sorted_actions:
robot_id = a[0]
robot = self.robots[robot_id]
action = a[1].action
print("robot {} action {}".format(robot, action))
self.handle_single_action(action, robot)
2020-09-20 16:04:35 +00:00
# apply the actions caused by board elements at the end of the phase
2020-09-19 19:15:23 +00:00
pass
def __str__(self):
2020-09-20 16:04:35 +00:00
#output = '#' * (Board.x_dims + 2) + '\n'
output = ''
for y in range(Board.y_dims+2):
for x in range(Board.x_dims+2):
2020-09-19 19:15:23 +00:00
if any((r.x, r.y) == (x,y) for r in self.robots.values()):
r = list(filter(lambda r: (r.x,r.y) == (x,y), self.robots.values()))[0]
output += str(r.id)
else:
output += str(self.board[(x, y)])
2020-09-20 16:04:35 +00:00
output += '\n'
#output += '#' * (Board.x_dims + 2)
2020-09-19 19:15:23 +00:00
return output
if __name__ == "__main__":
n = 5
2020-09-20 16:04:35 +00:00
player_1_cards = random.sample(list(filter(lambda c: 'forward' in c.action, deck.deck.values())), 3)
player_2_cards = random.sample(list(filter(lambda c: 'turn around' in c.action, deck.deck.values())), 3)
2020-09-19 19:15:23 +00:00
cards_1 = [(0, c) for c in player_1_cards]
cards_2 = [(1, c) for c in player_2_cards]
chosen_cards = list(zip(cards_1, cards_2))
b = Board()
print(b)
b.apply_actions(chosen_cards)