Compare commits

...

7 Commits

2 changed files with 485 additions and 34 deletions

81
app.py
View File

@ -2,29 +2,39 @@ from flask import Flask, render_template, request, session, make_response
import random import random
import socket import socket
import time import time
import roborally
app = Flask(__name__) app = Flask(__name__)
app.secret_key = b'RoboRallyRolling' app.secret_key = b'RoboRallyRolling'
random.seed(0)
moves = ['forward', 'forward x2', 'forward x3', 'backward', 'turn left', 'turn right', 'turn around'] probabilities = [0.21428571428571427, 0.14285714285714285, 0.07142857142857142, 0.07142857142857142, 0.21428571428571427, 0.21428571428571427, 0.07142857142857142]
deck = roborally.CardDeck()
class Game: class Game:
def __init__(self): def __init__(self):
self.action_stack = {} self.action_stack = {}
self.processing_done = False # indicates whether all commands in the current round have been processed self.processing_done = False # indicates whether all commands in the current round have been processed
self.comm_socket = socket.socket() # socket for communicating with the program controlling the robots self.board = roborally.Board()
self.comm_socket = socket.socket() # socket for communicating with the program controlling the robots
try:
self.comm_socket.connect(('192.168.1.222', 1337))
except socket.error:
print("could not connect to robot control socket!")
def ready(self): def ready(self):
# have all players chosen an action? # have all players chosen an action?
return len(self.action_stack.keys()) == Player.player_counter return len(self.action_stack.keys()) == Player.player_counter
def register_actions(self, player_id, actions): def register_actions(self, player_id, actions):
if not player_id in self.action_stack.keys(): # store the selected actions for the given player
if not player_id in self.action_stack.keys(): # make sure that the actions have not been registered before
print("registered actions: ", [str(a) for a in actions])
self.action_stack[player_id] = actions self.action_stack[player_id] = actions
deck.return_cards(actions) # put cards back into the deck
self.processing_done = False self.processing_done = False
return True return True
else: else:
@ -32,15 +42,34 @@ class Game:
return False return False
def process_actions(self): def process_actions(self):
# send commands to the robots in the order of priority l = []
for i in range(5): for p in self.action_stack.keys():
current_actions = [] l.append(zip([p] * len(self.action_stack[p]), self.action_stack[p]))
for p in self.action_stack.keys(): chosen_cards = list(zip(*l))
current_actions += [(p, self.action_stack[p][i])]
print("actions in step {}: {}".format(i, ["robot {} action {}".format(c[0], c[1]) for c in current_actions]))
time.sleep(1)
#self.comm_socket.send() # apply the chosen commands to the board which generates a list of movement commands to send to the control program
cmd_list = self.board.apply_actions(chosen_cards)
if False:
# send movements to the program
for c in current_actions:
if c[0] == 0:
print("{}, {}\n".format(c[1].action, 11))
self.comm_socket.sendall("{}, {}\n".format(c[1].action, 11).encode())
elif c[0] == 1:
print("{}, {}\n".format(c[1].action, 14))
self.comm_socket.sendall("{}, {}\n".format(c[1].action, 14).encode())
data = self.comm_socket.recv(32)
if data == b'OK\n':
print("an error occured while processing the commands")
self.processing_done = True
self.action_stack = {}
return
time.sleep(0.5)
#self.comm_socket.send()
# clear the action stack for the next round # clear the action stack for the next round
@ -48,21 +77,6 @@ class Game:
self.processing_done = True self.processing_done = True
class Card:
card_counter = 0
def __init__(self):
self.number = Card.card_counter
Card.card_counter += 1
self.action = random.choice(moves)
self.priority = random.randint(0, 100)
def __str__(self):
return "Card No. " + str(self.number) + " " + self.action + " " + str(self.priority)
card_deck = {}
for i in range(0,20):
card_deck[i] = Card()
class Player: class Player:
MAX_PLAYERS = 3 MAX_PLAYERS = 3
player_counter = 0 player_counter = 0
@ -73,20 +87,17 @@ class Player:
self.max_cards = 9 self.max_cards = 9
self.player_hand = random.sample(list(card_deck.values()), self.max_cards) self.player_hand = deck.draw_cards(self.max_cards)
print("current hand: ", [str(c) for c in self.player_hand]) print("current hand: ", [str(c) for c in self.player_hand])
self.action_count = 5 self.action_count = 5
self.action_chosen = False self.action_chosen = False
else: else:
print("max players reached!") print("max players reached!")
def draw_new_cards(self): def draw_new_cards(self):
self.player_hand += random.sample(list(card_deck.values()), self.max_cards - len(self.player_hand)) self.player_hand += deck.draw_cards(self.max_cards - len(self.player_hand))
players = {} players = {}
game = Game() game = Game()
@ -148,8 +159,10 @@ def hello_world():
i1 = int(request.form.get('drag')) # number of first card i1 = int(request.form.get('drag')) # number of first card
i2 = int(request.form.get('drop')) # number of second card i2 = int(request.form.get('drop')) # number of second card
card1 = card_deck[i1] # get card by number card1 = deck.deck[i1] # get card by number
card2 = card_deck[i2] card2 = deck.deck[i2]
print("swapping {} and {}".format(card1, card2))
j1 = player_hand.index(card1) # get index of card in the hand j1 = player_hand.index(card1) # get index of card in the hand
j2 = player_hand.index(card2) j2 = player_hand.index(card2)

438
roborally.py Normal file
View File

@ -0,0 +1,438 @@
import random
import sys
random.seed(0)
class Card:
possible_moves = ['forward', 'forward x2', 'forward x3', 'backward', 'turn left', 'turn right', 'turn around']
card_counter = 0
def __init__(self):
self.number = Card.card_counter
Card.card_counter += 1
self.action = random.choice(Card.possible_moves)
self.priority = random.randint(0, 100)
def __str__(self):
return "Card No. " + str(self.number) + " " + self.action + " " + str(self.priority)
def __repr__(self):
return self.action + " (" + str(self.priority) + ")"
class CardDeck:
def __init__(self, n=84):
self.deck = {}
# generate cards
for i in range(0, n):
self.deck[i] = Card()
self.dealt = set()
self.discard_pile = set()
def draw_cards(self, n=1):
available = set(self.deck.keys()).difference(self.dealt)
# print("{} cards are available".format(len(available)))
if len(available) < n:
drawn = list(available) # give out remaining cards
# print("drawing remaining {} cards".format(len(drawn)))
self.dealt = self.dealt.union(drawn)
# put the cards from the discard pile back into the game
self.dealt = self.dealt - self.discard_pile
self.discard_pile = set() # reset the discard pile
# draw rest of cards
available = set(self.deck.keys()).difference(self.dealt)
# print("drawing another {} cards".format(n - len(drawn)))
drawn += random.sample(available, n - len(drawn))
else:
drawn = random.sample(available, n)
# print("cards drawn: {}".format(drawn))
self.dealt = self.dealt.union(drawn)
return [self.deck[i] for i in drawn]
def return_cards(self, cards):
self.discard_pile = self.discard_pile.union(set([c.number for c in cards]))
pass
class Robot:
# dictionary mapping the current orientation and a turn command to the resulting orientation
resulting_orientation = {
'^': {'turn left': '<', 'turn right': '>', 'turn around': 'v'},
'>': {'turn left': '^', 'turn right': 'v', 'turn around': '<'},
'v': {'turn left': '>', 'turn right': '<', 'turn around': '^'},
'<': {'turn left': 'v', 'turn right': '^', 'turn around': '>'},
}
# dictionary mapping the current orientation and the target orientation to the necessary turn command
necessary_turn = {
'^': {'>': 'turn right', 'v': 'turn around', '<': 'turn left'},
'>': {'v': 'turn right', '<': 'turn around', '^': 'turn left'},
'v': {'<': 'turn right', '^': 'turn around', '>': 'turn left'},
'<': {'^': 'turn right', '>': 'turn around', 'v': 'turn left'},
}
# dictionary mapping an orientation to its opposite
opposites = {'^': 'v', '>': '<', 'v': '^', '<': '>'}
def __init__(self, x, y, orientation, id, board):
self.x = x
self.y = y
self.orientation = orientation
self.id = id
self.board = board
# mark the tile on the board as occupied
self.board[(x,y)].occupant = self
def get_accessed_tiles(self, count, forward=True):
# create a list of all tiles the robot would enter if it drives <count> steps forward
tiles = []
current_tile = self.board[(self.x, self.y)]
for i in range(1, count + 1):
if forward:
current_tile = self.board.get(current_tile.get_neighbor_coordinates(self.orientation))
else:
current_tile = self.board.get(current_tile.get_neighbor_coordinates(Robot.opposites[self.orientation]))
if current_tile is None:
return tiles
else:
tiles.append(current_tile)
return tiles
def is_pushable(self, direction):
# check if the robot can be pushed in the given direction
# this is the case if there is a non-blocking tile next to the robot or if there is another robot that is pushable
robot_tile = self.board[(self.x, self.y)]
neighbor_tile = self.board.get(robot_tile.get_neighbor_coordinates(direction))
if neighbor_tile is None: # neighbor tile could not be found -> robot would be pushed out of the board
return False
else:
if neighbor_tile.is_empty():
return True
elif neighbor_tile.modifier == '#': # if there's a wall on the neighbor tile the robot cannot be pushed there
return False
else:
# this means there's another robot on the neighbor tile -> check if it can be pushed away
return neighbor_tile.occupant.is_pushable(direction)
def has_opposite_orientation(self, direction):
opposites = [('^', 'v'), ('>', '<'), ('v', '^'), ('<', '>')]
return (self.orientation, direction) in opposites
def get_turn_direction(self, target_orienation):
return Robot.necessary_turn[self.orientation][target_orienation]
def get_opposite_orientation(self):
return Robot.opposites[self.orientation]
def turn(self, type):
# change the orientation of the robot
self.orientation = Robot.resulting_orientation[self.orientation][type]
return "{}, {}".format(self.id, type)
def move(self, type):
# move the robot forward or backward
# this involves
tile = self.board[(self.x, self.y)]
if type == 'forward':
target_tile = self.board[tile.get_neighbor_coordinates(self.orientation)]
if target_tile.occupant is not None:
print("error: target tile is not empty")
sys.exit(1)
tile.occupant = None # delete the robot from the current tile
target_tile.occupant = self # place the robot in the next tile
self.x = target_tile.x
self.y = target_tile.y
# return the move for sending to the controller
return "{}, forward".format(self.id)
elif type == 'backward':
opposite_orientation = self.get_opposite_orientation()
target_tile = self.board[tile.get_neighbor_coordinates(opposite_orientation)]
if target_tile.occupant is not None:
print("error: target tile is not empty")
sys.exit(1)
tile.occupant = None # delete the robot from the current tile
target_tile.occupant = self # place the robot in the next tile
self.x = target_tile.x
self.y = target_tile.y
# return the move for sending to the controller
return "{}, backward".format(self.id)
else:
print("error: invalid move")
sys.exit(1)
def nop(self):
# do nothing command
return "{}, nop".format(self.id)
def __str__(self):
return str(self.id)
class Tile:
# possible modifiers:
# conveyors: <, >, ^, v
# repair station: r
# flag: f<number>
def __init__(self, x, y, modifier=None):
self.modifier = modifier
self.occupant = None
self.x = x
self.y = y
def get_neighbor_coordinates(self, direction):
# get the coordinates of the neighboring tile in the given direction
if direction == '^':
return (self.x, self.y - 1)
elif direction == '>':
return (self.x + 1, self.y)
elif direction == 'v':
return (self.x, self.y + 1)
elif direction == '<':
return (self.x - 1, self.y)
else:
print("error: unknown direction")
sys.exit(1)
def is_empty(self):
# check if the tile is non-empty and does not contain a wall
return self.occupant is None and self.modifier != '#'
def __str__(self):
if self.is_empty():
if self.modifier is None:
return ' '
else:
return self.modifier
else:
if self.occupant is None:
return self.modifier
else:
return str(self.occupant)
def __repr__(self):
return "({}, {}) occ: {} mod: {}".format(self.x, self.y, self.occupant, self.modifier)
class Board:
x_dims = 12 # number of tiles in x direction
y_dims = 6 # number of tiles in y direction
def __init__(self):
self.board = {}
for x in range(Board.x_dims + 2):
for y in range(Board.y_dims + 2):
if (x == 0) or (x == Board.x_dims + 1) or (y == 0) or (y == Board.y_dims + 1):
# place walls around the board
self.board[(x, y)] = Tile(x, y, '#')
elif x == 1 and (y >= 1) and (y < 4):
self.board[(x, y)] = Tile(x, y, 'v')
elif y == 4:
self.board[(x, y)] = Tile(x, y, '>')
else:
self.board[(x,y)] = Tile(x,y)
self.robots = {}
self.robots[0] = Robot(3, 1, '>', 0, self.board)
self.robots[1] = Robot(2, 1, 'v', 1, self.board)
def handle_push(self, direction, pushed_robot, forward=True, pushing_robot=None):
cmd_list = []
# push robot out of the way
if pushed_robot.orientation == direction:
if forward:
# the pushed robot can just drive forward
cmd_list += self.handle_single_action('forward', pushed_robot)
else:
# the pushed robot can just drive backward
cmd_list += self.handle_single_action('backward', pushed_robot)
elif pushed_robot.has_opposite_orientation(direction):
if forward:
# the pushed robot can drive backward
cmd_list += self.handle_single_action('backward', pushed_robot)
else:
# the pushed robot drives forward
cmd_list += self.handle_single_action('forward', pushed_robot)
else:
# we first have to turn the pushed robot s.t. it faces in the same orientation as the
# pushing robot
turn_direction = pushed_robot.get_turn_direction(direction)
cmd_list += self.handle_single_action(turn_direction, pushed_robot)
if forward:
# then the pushed robot drives one step forward
cmd_list += self.handle_single_action('forward', pushed_robot)
else:
# if its pushed backward it instead drives on step backward
cmd_list += self.handle_single_action('backward', pushed_robot)
# afterwards we turn the robot back to the original orientation
if turn_direction == 'turn left':
turn_back_direction = 'turn right'
elif turn_direction == 'turn right':
turn_back_direction = 'turn left'
else:
print("error: invalid turn direction")
sys.exit(1)
cmd_list += self.handle_single_action(turn_back_direction, pushed_robot)
if pushing_robot is not None:
# now the tile should be empty so the pushing robot can move into the tile
if forward:
cmd_list.append(pushing_robot.move('forward'))
else:
cmd_list.append(pushing_robot.move('backward'))
return cmd_list
def handle_single_action(self, action, robot):
cmd_list = []
if 'forward' in action: # driving forward
if "x2" in action:
move_count = 2
elif "x3" in action:
move_count = 3
else:
move_count = 1
accessed_tiles = robot.get_accessed_tiles(move_count)
for tile in accessed_tiles:
if tile is None:
# this case should not happen
print("error: unknown state occured")
sys.exit(1)
elif tile.is_empty():
# if the tile is empty we can just move there
cmd_list.append(robot.move('forward'))
elif tile.modifier == '#': # robot hits a wall -> stop the robot
cmd_list.append(robot.nop())
return cmd_list
elif any([(tile.x, tile.y) == (r.x, r.y) for r in
self.robots.values()]): # robots hits a tile occupied by another robot
pushed_robot = next(filter(lambda r: (tile.x, tile.y) == (r.x, r.y), self.robots.values()))
if pushed_robot.is_pushable(robot.orientation): # check if robot is pushable in the given direction
cmd_list += self.handle_push(direction=robot.orientation, pushed_robot=pushed_robot, forward=True, pushing_robot=robot)
else:
cmd_list.append(robot.nop())
return cmd_list
else:
# this case should not happen
print("error: unknown state occured")
sys.exit(1)
elif action == 'backward':
# basically do the same as with forward
accessed_tiles = robot.get_accessed_tiles(1, forward=False)
for tile in accessed_tiles:
if tile is None:
# this case should not happen
print("error: unknown state occured")
sys.exit(1)
elif tile.is_empty():
# if the tile is empty we can just move there
cmd_list.append(robot.move('backward'))
elif tile.modifier == '#': # robot hits a wall -> stop the robot
cmd_list.append(robot.nop())
return cmd_list
elif any([(tile.x, tile.y) == (r.x, r.y) for r in
self.robots.values()]): # robots hits a tile occupied by another robot
pushed_robot = next(filter(lambda r: (tile.x, tile.y) == (r.x, r.y), self.robots.values()))
if pushed_robot.is_pushable(Robot.opposites[robot.orientation]): # check if robot is pushable in the given direction
cmd_list += self.handle_push(direction=robot.orientation, pushed_robot=pushed_robot, forward=False, pushing_robot=robot)
else:
cmd_list.append(robot.nop())
return cmd_list
else:
# this case should not happen
print("error: unknown state occured")
sys.exit(1)
else: # this means we have a turn action
cmd_list.append(robot.turn(action))
return cmd_list
def handle_board_element(self, robot):
cmd_list = []
tile = self.board[(robot.x, robot.y)]
if tile.modifier in ['^', '>', 'v', '<']:
# board element pushes the robot to next tile
if robot.is_pushable(tile.modifier):
cmd_list += self.handle_push(direction=tile.modifier, pushed_robot=robot, forward=True)
else:
cmd_list.append(robot.nop())
return cmd_list
def apply_actions(self, cards):
cmd_list = []
# apply the actions to the board and generate a list of movement commands
for i, phase in enumerate(cards): # process register phases
print("processing phase {}".format(i+1))
# sort actions by priority
sorted_actions = sorted(phase, key=lambda a: a[1].priority)
for a in sorted_actions:
robot_id = a[0]
robot = self.robots[robot_id]
action = a[1].action
print("robot {} action {}".format(robot, action))
cmd_list += self.handle_single_action(action, robot)
# apply the actions caused by board elements at the end of the phase
for robot_id in self.robots:
robot = self.robots[robot_id]
cmd_list += self.handle_board_element(robot)
print(cmd_list)
print(self)
pass
return cmd_list
def __str__(self):
#output = '#' * (Board.x_dims + 2) + '\n'
output = ''
for y in range(Board.y_dims+2):
for x in range(Board.x_dims+2):
if any((r.x, r.y) == (x,y) for r in self.robots.values()):
r = list(filter(lambda r: (r.x,r.y) == (x,y), self.robots.values()))[0]
output += str(r.id)
else:
output += str(self.board[(x, y)])
output += '\n'
#output += '#' * (Board.x_dims + 2)
return output
if __name__ == "__main__":
n = 5
deck = CardDeck()
player_1_cards = random.sample(list(filter(lambda c: 'backward' in c.action, deck.deck.values())), n)
player_2_cards = random.sample(list(filter(lambda c: 'turn around' in c.action, deck.deck.values())), n)
#player_1_cards = deck.draw_cards(40)
#player_2_cards = deck.draw_cards(40)
cards_1 = [(0, c) for c in player_1_cards]
cards_2 = [(1, c) for c in player_2_cards]
chosen_cards = list(zip(cards_1, cards_2))
b = Board()
print(b)
b.apply_actions(chosen_cards)